
VISUAL OBJECT TRACKING VIA RANDOM FERNS BASED CLASSIFICATION

Aniruddha Acharya K. R. Venkatesh Babu

Video Analytics Lab, Supercomputer Education and Research Center,

Indian Institute of Science, Bangalore, India

ABSTRACT

Designing a robust algorithm for visual object tracking has

been a challenging task since many years. There are trackers

in the literature that are reasonably accurate for many tracking

scenarios but most of them are computationally expensive.

This narrows down their applicability as many tracking appli-

cations demand real time response. In this paper, we present

a tracker based on random ferns. Tracking is posed as a clas-

sification problem and classification is done using ferns. We

used ferns as they rely on binary features and are extremely

fast at both training and classification as compared to other

classification algorithms. Our experiments show that the pro-

posed tracker performs well on some of the most challenging

tracking datasets and executes much faster than one of the

state-of-the-art trackers, without much difference in tracking

accuracy.

Index Terms— Object tracking, Classification, Random

Ferns

1. INTRODUCTION

Object tracking in video involves tracking the location of a

given object in all frames of a video, given its location in

the first frame. The problem has many applications in other

high level computer vision tasks like video recognition, traf-

fic monitoring, robot navigation and video indexing and re-

trieval.

Some of the challenges in object tracking are handling of

object pose change, scale change, illumination variation and

occlusion. These factors deviate the appearance of object in

the first frame of video from the subsequent frames. And that

makes localization challenging.

Objects in video can be non-rigid and can change their

pose (for example humans). Pose change introduces redistri-

bution of object parts or revealing of parts of the object unseen

in the first frame. This makes it difficult to get high accuracy

tracking by relying on the first frame appearance in a naive

method.

Objects in a video may appear to expand or contract. This

may either happen because the object has moved close to or

away from the camera, or the object has expanded or shrunk,

or due to camera zoom. In any case, to effectively track, the

scale change must be recognized and the appropriate bound-

ing box must be selected.

Lighting changes are one another complication during

tracking. Illumination changes can modify the appearance to

a great extent, and hence trackers must be invariant to them

or be adaptive to handle them.

Sometimes objects may get occluded by other objects

which are not of interest. It is a great challenge to identify the

presence of object behind another object, without observing

it. Some trackers like the L1 tracker [1] handle this by using

trivial templates in L1 minimization framework.

Many of the existing robust trackers are slow in execution

and cannot satisfy the real time requirements of tracking ap-

plications. The work that is described in this paper aims at

designing a tracker that is real time as well as robust. This pa-

per presents a tracker that is comparable to the state-of-the-art

trackers in terms of accuracy, and has better execution speed.

In this paper, tracking is posed as a classification problem.

A search window is defined in each frame of the video based

on the previous frame tracking result. Overlapping image

patches of the search window are assumed to belong to one of

the 16 patch classes. Depending on the classification result,

a likelihood of object map is created, whose weighted cen-

troid is used as the location of the object. The tracker senses

scale changes and adapts to appearance and pose changes of

the object.

This paper is organized as follows: The related works are

given in Section 2. Section 3 gives a brief overview of ferns

and the proposed tracker is explained in Section 4. Exper-

iments conducted and the results are presented in Section 5

and are discussed in Section 6. Section 7 concludes the paper.

2. RELATED WORK

Visual object tracking has received strong attention by re-

searchers. It has been in the literature since many years now,

but still is no close to being a solved problem.

Early works in object tracking include the mean shift

tracker [2] and SSD tracker [3]. The mean shift tracker in-

crementally seeks the mode of the likelihood distribution of

object location and finds the object location in frames of the

video. The likelihood distribution is computed using features

like color or gray value. The SSD (Sum of squared distances)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6583

tracker searches for the object by computing SSD between

the object model obtained by the first frame and the candidate

object patches in the frames of video. This tracker is not

robust to illumination changes as it relies only on the raw

patches.

Collins has proposed a mean shift based blob tracking

though scale space [4]. The tracker recognizes scale changes

in the object and adjusts the width and height of bounding

box at every frame by iteratively applying mean shift across

spatial and scale spaces.

Mei et al. [1] proposed a tracker based on sparse repre-

sentation and L1 minimization. A dictionary is built in which

the object can be sparsely represented. L1 minimization is

performed at every frame for the candidate objects in parti-

cle filter framework and the object is localized based on the

particle that provides the least reconstruction error.

The performance and speed of this tracker has been im-

proved by Babu et al. [5], [6] by adapting the sparse represen-

tation framework by modeling the object with local patches.

Further Ashwini et al. [7] extended the this approach by clas-

sifying foreground and background patches for reliable track-

ing.

Jia et al. [8] proposed a tracker which uses the structural

information of the object. Object patches are divided into

multiple sub-patches and each of the sub-patches are iden-

tified in the next frame using L1 minimization framework.

Few machine learning based trackers were proposed in

the past. Avidan [9] used weak classifiers for modeling the

object and background classes. Babu et al. [10] used extreme

learning machines for rapid object background classification

for tracking.

Random ferns were first introduced in [11] as a descriptor

of patches around keypoints of an image. Ferns were used as

an object detector and for matching images by matching the

keypoints.

Ferns were used in [12] as the object detector part of an

integrated tracker called TLD (Tracking-Learning-Detecting)

[13]. A learning strategy called p-n learning was integrated

with the Lucas Kanade tracker and fern based object detector.

Enhanced random ferns are used in [14] along with NCC

(Normalized Cross Correlation) for tracking. Long term

tracking is the core aim of this tracker, and ferns are used

only as an object detector, unlike in the proposed tracker

wherein ferns are directly used for tracking.

3. RANDOM FERNS

We use random ferns [11] as our classifiers and classify

patches in the search window of video frames. Ferns have

emerged as a simplification of decision tree classifiers. Ferns

are non-hierarchical structures which rely on simple binary

tests for distinction between classes. Each fern turns out to

be a weak classifier, but the ensemble of hundreds of ferns,

each with random binary tests as features, is a highly robust

classifier.

N binary features are extracted from each of the patches

to be classified. Each binary feature fi is obtained by com-

paring a random pixel of the patch with a random threshold

as shown in the equation:

fi =

{

1, if I(xi, yi) ≤ ki

0, otherwise

where,I represents the image and (xi, yi) is the random loca-

tion and ki is the random threshold used by the ith feature.

Unlike decision trees, wherein the binary feature test out-

puts are hierarchically structured to arrive at the class, ferns

combine the binary features using a semi naive Bayesian ap-

proach: Let ci denote the ith class . Then the output class is

given by

argmax
ci

{P (C = ci|f1, f2, f3, ..., fN)}

where, C is a random variable representing the class of the

patch. Using Bayes formula, we can write

P (C = ci|f1, f2, ..., fN) =
P (f1, ..., fN |C = ci).P (C = ci)

P (f1, f2, f3, ..., fN)

Since each feature is very simple, a large N is required for

a good classification result. In that case, representing the

joint probability will require storing 2N entries for each class,

which is infeasible. To reduce the memory requirement, sets

of M features of size S = N

M
, randomly taken from the set

of all features are assumed to be independent. Each of these

sets are called ferns. Thus classification is obtained using the

conditional probability:

P (f1, f2, f3, ..., fN |C = ci) =

M
∏

k=1

P (Fk|C = ci)

where, Fk is the kth fern, represented by an integer of S bits.

4. METHODOLOGY

In the first frame, a search window is defined as a bound-

ing box around the known object bounding box as shown in

Figure 1, which includes background pixels surrounding the

object. The search window is divided into 16 equally sized

non-overlapping blocks as shown in Figure 1. 5× 5 overlap-

ping patches of each of the blocks are assumed to belong to a

class. Thus in every frame, we have 5× 5 patches around the

object belonging to one of the 16 classes. As can be observed

from Figure 1, 4 out of 16 classes belong to the object and

the rest of the classes belong to the background. The reason

behind choosing 16 classes instead of only 2 classes corre-

sponding to object and background is that it is experimentally

6584

Search Window

C1 C2 C3 C4

C15 C16

Fig. 1. Search window and the 16 classes

Search Window Likelihood map

Estimated Object Location

Fig. 2. Left: Search window Center: Gaussian weighted like-

lihood map with centriod shown in red, Right: Estimated ob-

ject location

shown in [11] that ferns have better classification accuracy for

large number of classes. Moreover, there will be a huge class

imbalance in terms of the volume of training data in case of

only two classes.

Training phase involves computing P (Fk|C = ci) for ev-

ery i and every possible fern value. 5×5 patches are extracted

from the initial search window. These patches are used to

compute binary features, ferns and fern likelihood of the 16
classes.

During testing, a search window is defined on each frame

of the video using the previous frame bounding box. The

patches inside the search window are classified using ferns,

and a binary likelihood map of object is obtained. The like-

lihood map is weighed using a Gaussian window centered at

the center of the search window to reduce the effect of noisy

boundary patches. The centroid of the likelihood map is com-

puted and set as the center of the object. This process is illus-

trated in Figure 2.

4.1. Handling of scale changes

Object scale may change in the video due to reasons like

camera zoom and object movement towards camera. In our

tracker, initial object scale is obtained from the scale-space

generated using scale-normalized Laplacian of Gaussian fil-

ter.

LoG(x, y) = −
1

πσ3
[1−

x2 + y2

2σ2
]e−

x2+y2

2σ2

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100
−12

−10

−8

−6

−4

−2

0

2

x 10
−6

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0
LoG response

Sigma

0 5 10 15 20 25 30 35 40 45 50
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Sigma

LoG response

Fig. 3. Left - Plot of Laplacian of Gaussian, Right - LoG

response

Figure 3 shows a plot of 2D Laplacian of Gaussian. It has a

large negative central lobe and small positive side lobes sur-

rounding it. Laplacian of Gaussians (LoG) are well known to

detect the scale of objects in image. The standard deviation

σ is a measure of scale of the object. As σ of LoG increases,

the width of the central lobe increases. LoG filtering opera-

tion can be represented as:

Response = LoG(σ) ∗ I

The LoG whose central lobe exactly fits the object gives the

minimum filter output. Hence the right scale(σ) can be found

by filtering the image using LoGs with different σ and find-

ing the minimum response. Figure 3 shows LoG response

vs σ plot for two images with different scales. It can be ob-

served that σ with the minimum response is higher for the

larger scaled image.

We use the binary likelihood map obtained from ferns as

the input to LoG filter. A small neighborhood of the scale

space around the previous frame scale is used to search for

the correct scale in the current frame. Usually the likelihood

map is noisy and the estimate of scale is not very accurate.

Hence we use the Kalman filter to get a better estimate of the

object scale. The width and height of the object bounding box

is adjusted according to the scale identified.

4.2. Handling of pose and appearance changes

Object pose and appearance changes are one of the major

causes for the difficulty in object tracking. The proposed

tracker handles these by adopting an update in the model. The

fern model consists of the probabilities P (Fk|C = ci). As

tracking progresses, we include the effect of newly obtained

search window patches. Since a wrong update can be disas-

trous, only a random fraction of the search window patches

are used. The training process is re-run by including the new

patches to obtain the updated model. To have a limit on the

training data, we discard old training samples whenever the

training data size reaches a threshold.

5. EXPERIMENTS AND RESULTS

We have implemented the fern based tracker on a 2.30 GHz

i5 processor, and evaluated its performance on challenging

videos. We have used MATLAB for programming and used

the Piotr’s toolbox [16] for fern training and testing.

6585

Fig. 4. Output of different trackers: Red-Proposed, white-Mean Shift[4], yellow-TLD[13], blue:L1APG[15], green-VT [8]

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

Frame Number

P
o
s
it
io

n
 E

rr
o
r

(i
n
 p

ix
e
ls

)

RMSE for Trellis

Proposed

L1 APG [16]

Mean Shift [4]

TLD [13]

VT [8]

Fig. 5. RMSE vs frame number for Trellis video

We have compared our tracker with the mean shift tracker

[4], TLD tracker [13], L1-APG tracker [15] and the visual

tracker [8]. Datasets used are panda video, Trellis, hand,

and David indoor. These datasets have good amount of pose,

lighting, and appearance changes in them.

Figure 4 shows the results of the proposed tracker along

with that of the other trackers for different frames of the

datasets. Table 1 shows the average root mean squared error

(RMSE) of the trackers with respect to ground truth. Figure 5

shows the plot of RMSE vs frame number for the trellis video

for different trackers.

6. DISCUSSION

The results in Table 1 show that the proposed tracker is far

better than Mean shift, TLD and L1-APG in terms of tracking

accuracy. As compared to [8], the tracker accuracy is lesser

Table 1. Average RMSE

Sequence
Mean

Shift[4]
TLD[13]

L1APG

[15]
VT[8] Proposed

Panda 148.80 55.05 47.06 8.31 5.85

David Indoor 128.60 8.12 59.40 3.61 22.13

Hand 103.44 93.89 66.96 135.79 31.72

Trellis 51.07 66.30 47.41 18.77 19.97

for Trellis by a small margin and for david by a significant

margin. However, our tracker is almost 7 times faster than

[8]. Our tracker runs at 8.8 fps whereas [8] runs at 1.27 fps.

Almost 85% of the time spent by our tracker is devoted

to model updation using unoptimized MATLAB code, since

fern posteriors are re-computed for every update. Time re-

quired for fern classification is much less than that required

for training.

7. CONCLUSIONS AND FUTURE WORK

We have presented a fern based tracker. Tracking is posed as

a classification problem and random ferns are used as classi-

fiers. The results show that the tracker has an accuracy much

more than many of the well known trackers and an accuracy

comparable to a state of the art tracker. The advantage of this

tracker is that, it has an execution speed-up of almost 7 as

compared to the existing state of the art tracker. Our future

work will include coming up with a better update rule and use

of location priors to increase the tracker accuracy.

6586

8. REFERENCES

[1] Xue Mei and Haibin Ling, “Robust visual tracking us-

ing l1 minimization,” in Proceedings of 12th IEEE In-

ternational Conference on Computer Vision, 2009, pp.

1436–1443.

[2] Dorin Comaniciu, Visvanathan Ramesh, and Peter

Meer, “Real-time tracking of non-rigid objects using

mean shift,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2000, vol. 2,

pp. 142–149.

[3] Gregory D Hager, Maneesh Dewan, and Charles V

Stewart, “Multiple kernel tracking with SSD,” in Pro-

ceedings of IEEE Conference on CVPR, 2004, vol. 1,

pp. I–790.

[4] Robert T Collins, “Mean-shift blob tracking through

scale space,” in Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recogni-

tion, 2003, vol. 2, pp. II–234.

[5] R.Venkatesh Babu, “Real-time robust tracking via

sparse representation: A mode-seeking approach,” in

Proceedings of IEEE International Conference on Im-

age Processing (ICIP), 2013, pp. 3919–3923.

[6] R.Venkatesh Babu and Priti Parate, “Interest points

based object tracking via sparse representation,” in Pro-

ceedings of IEEE International Conference on Image

Processing (ICIP), 2013, pp. 2963–2967.

[7] M.J. Ashwini, R.Venkatesh Babu, and K.R. Ramakrish-

nan, “Context-aware real-time tracking in sparse rep-

resentation framework,” in Proceedings of IEEE Inter-

national Conference on Image Processing (ICIP), 2013,

pp. 2450–2454.

[8] Xu Jia, Huchuan Lu, and Ming-Hsuan Yang, “Visual

tracking via adaptive structural local sparse appearance

model,” in Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2012, pp.

1822–1829.

[9] Shai Avidan, “Ensemble tracking,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 29,

no. 2, pp. 261–271, 2007.

[10] R Venkatesh Babu, Sundaram Suresh, and Anamitra

Makur, “Online adaptive radial basis function networks

for robust object tracking,” Computer Vision and Image

Understanding, vol. 114, no. 3, pp. 297–310, 2010.

[11] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit,

and Pascal Fua, “Fast keypoint recognition using ran-

dom ferns,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 32, no. 3, pp. 448–461, 2010.

[12] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk,

“PN learning: Bootstrapping binary classifiers by struc-

tural constraints,” in Proceedings of IEEE Conference

on CVPR, 2010, pp. 49–56.

[13] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas,

“Tracking-learning-detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 34, no.

7, pp. 1409–1422, 2012.

[14] Wei Quan, Jim X Chen, and Nanyang Yu, “Robust ob-

ject tracking using enhanced random ferns,” The Visual

Computer, pp. 1–8, 2013.

[15] Chenglong Bao, Yi Wu, Haibin Ling, and Hui Ji, “Real

time robust l1 tracker using accelerated proximal gra-

dient approach,” in Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

2012, pp. 1830–1837.

[16] Piotr Dollár, “Piotr’s Image and Video Mat-

lab Toolbox (PMT),” http://vision.ucsd.edu/ pdol-

lar/toolbox/doc/index.html.

6587

