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ABSTRACT

We propose a factorized robust matrix completion (FRMC) algo-
rithm with global motion compensation to solve the video back-
ground subtraction problem. The algorithm decomposes a sequence
of video frames into the sum of a low rank background component
and a sparse motion component. The algorithm alternates between
the solution of each component following a Pareto curve trajectory
for each subproblem. For videos with moving background, we uti-
lize the motion vectors extracted from the coded video bitstream
to compensate for the change in the camera perspective. Perfor-
mance evaluations show that our approach is faster than state-of-
the-art solvers and results in highly accurate motion segmentation.

Index Terms— Motion segmentation, foreground / background
separation, robust matrix completion, robust principal component
analysis, global motion estimation.

1. INTRODUCTION

Background subtraction is the problem is of finding moving objects
in video that are independent of the background scene. The segmen-
tation of moving objects helps in analyzing the trajectory of moving
targets and in improving the performance of object detection and
classification.

Motion segmentation algorithms can be classified into algebraic
decomposition techniques [1–4] and statistical motion flow tech-
niques [5–8]. Algebraic approaches generally model the background
scene as a low dimensional subspace. The moving objects are then
separated as the error terms that live in the orthogonal complement
of the background subspace. When the camera is stationary, the low
dimensional subspace is low rank and algorithms such as robust prin-
ciple component analysis (RPCA) have been shown to successfully
segment the foreground from the background [1, 2, 9]. When the
camera is moving, the low rank structure no longer holds and adap-
tive subspace estimation techniques are used to track the background
subspace [4,10]. Statistical motion flow techniques generally utilize
Gaussian mixture models of image plane motion to capture the tra-
jectories of moving objects.

In this paper, we follow an algebraic approach to solving the
background subtraction problem using robust matrix completion.
We develop in section 2 a fast and memory efficient algorithm that
decomposes a group of video pictures (GOP) into a low rank com-
ponent corresponding to the background and a sparse component
corresponding to the moving objects in the scene. The algorithm
uses factorized matrix decomposition with a pre-specified rank to
compute the low rank component similar to the approach adopted
by Aravkin et al. [11]. We then adopt a block coordinate descent
approach using spectral projected gradient steps to alternate between

the solution of the low rank component and the sparse component all
the while traversing the updated Pareto curve of each subproblem.
In scenes that exhibit camera motion, we first extract the motion
vectors from the coded video bitstream and fit the global motion of
every frame to a parametric perspective model with 8 parameters
described in section 3. We then align the frames to match the per-
spective of the first frame in the GOP and use our factorized robust
matrix completion algorithm to fill in the background pixels that are
missing from the individual video frames in the GOP. In sections 4
and 5, we demonstrate how our algorithm can be run in batch mode
and online and how it does not require any training step to learn the
initial subspace.

2. FACTORIZED ROBUST MATRIX COMPLETION

In this section, we describe the factorized robust matrix completion
(FRMC) algorithm we use to solve background subtraction problem.

Suppose that we are given a data matrix Y ∈ Rm×n that is
composed of the sum of a low rank component X0 and a sparse
component S0, such that, Y = X0 + S0. Let A : Rm×n → Rp
be a restriction operator that selects a subset Ω of size p of the mn
samples in Y . We define the robust matrix completion problem as
the problem of finding X0 and S0 from incomplete measurements
b = A(Y ). Several works in the literature [1,2] address this problem
by formulating it as the multi objective minimization problem

min
X,S
‖X‖∗ + λ‖S‖1 subject to b = A (X + S) , (1)

where λ is a positive weighting parameter. When the entries of
Y are fully observed, i.e., A is an identity matrix, the problem is
known as the robust principal component analysis (RPCA) problem
and the optimization problem (1) is referred to as principal com-
ponent pursuit. Moreover, it was shown in [2] that a choice of
λ = n̂−1/2, n̂ := max{m,n}, is sufficient to guarantee the re-
covery of X0 and S0 with high probability when the rank(X0) ≤
Cn̂ (log n̂)−2 for some constant C that depends on the coherence of
the subspace of X0.

One of the main drawbacks of problem (1) is that it requires the
computation of full (or partial) singular value decompositions of X
in every iteration of the algorithm, which could become prohibitively
expensive when the dimensions are large. To overcome this problem,
we adopt a proxy for the nuclear norm of a rank-r matrix X defined
by the following factorization from Lemma 8 in [12]

‖X‖∗ = inf
L∈Rm,r,R∈Rn,r

1

2

(
‖L‖2F + ‖R‖2F

)
s.t. LRT = X. (2)

The nuclear norm proxy has recently been used in standard nuclear
norm minimization algorithms [11,13] that scale to very large matrix
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completion problems. Moreover, it was shown in Corollary 4.2 of
[11] that when the factors L and R have a rank greater than or equal
to the true rank of X , then a spectral projected gradient algorithm
utilizing the nuclear norm proxy is guaranteed to converge to the
solution of the corresponding nuclear norm minimization problem.

Our FRMC algorithm extends the approach of [11] to the robust
matrix completion problem by alternating between the solutions of
two subproblems as shown in Algorithm 1:

Algorithm 1 Factorized Robust Matrix Completion (FRMC)

1: Input b = A(X0 + S0), tolerance σ
2: Output L, R, S
3: Initialize S = 0, L,R random Gaussian entries, τS = ‖S‖1,
τX = 1

2

(
‖L‖2F + ‖R‖2F

)
4: while ‖b−A(X + S)‖F ≤ σ do
5: Solve for low rank component:
6: bLR = b−A(S)
7: M = bLR −A(LRT )
8: τX = τX + (‖M‖F − σ) /‖AT (M)‖2
9:

min
L,R
‖bLR −A(LRT )‖F s.t. ‖L‖2F + ‖R‖2F ≤ 2τX (3)

10: Solve for sparse component:
11: bS = b−A(LRT )
12: M = bS −A(S)
13: τS = τS +

(
‖M‖2F − σ‖M‖F

)
/‖AT (M)‖∞

14:
min
S
‖bS −A(S)‖F s.t. ‖S‖1 ≤ τS (4)

15: end while

Each subproblem in the FRMC algorithm is a LASSO problem
that we solve using spectral projected gradient iterations. The ratio-
nale behind this approach follows from the work of van den Berg and
Friedlander [14] on the SPGL1 solver for the basis pursuit denoise
problem. For every fixed sparse component S with bLR = b−A(S),
the sequence of iterates Xτ = LRT , where (L,R) is the solution to
(3), are samples on the Pareto curve of the nuclear norm minimiza-
tion problem

min
X
‖X‖∗ s.t. ‖bLR −A(X)‖F ≤ σ.

Moreover, the update rule of τX is a Newton root finding step of the
problem φ(τX) = σ, where

φ(τX) = min
L,R
‖bLR −A(LRT )‖F s.t.

1

2

(
‖L‖2F + ‖R‖2F

)
≤ τX .

Consequently, the FRMC algorithm switches between traversing the
Pareto curves of the nuclear norm minimization problem and the `1
norm minimization problem. For every subproblem, the Pareto curve
is updated to the new value of S and the function φ(τX) is minimized
by following a Newton step on the new Pareto curve. The same anal-
ysis applies to S when L and R are fixed. Therefore, the algorithm
guarantees that the exit condition ‖b − A(X + S)‖F ≤ σ will be
satisfied.

We note that our framework in Algorithm 1 bares similarity to
the SpaRCS algorithm [9]. The main difference is that SparCS fol-
lows a greedy approach that iteratively estimates the low rank sub-
space of X as well as the support of S followed by truncated SVD

and least squares inversion to compute estimates for X and S.

3. GLOBAL MOTION PARAMETRIZATION

In videos where the camera itself is moving, applying the FRMC
algorithm directly to the video frames fails in segmenting the cor-
rect motion since the background itself is non-stationary. A non-
stationary background does not live in a low rank subspace, there-
fore, we can only expect the algorithm to fail. Therefore, we first
estimate the global motion parameters in the video in order to com-
pensate for the camera motion. We then align the background and
apply the FRMC algorithm to segment the moving objects.

Global motion estimation received a lot of attention from the
research community during the development of the MPEG-4 Visual
standard [15]. One approach relates the coordinates (x1, y1) in a
reference image I1 to the coordinates (x2, y2) in a target image I2
using an 8-parameter homography vector h such that

x2 = h0+h2x1+h3y1
1+h6x1+h7y1

y2 = h1+h4x1+h5y1
1+h6x1+h7y1

.
(5)

Given the homography vector h = [h0 h1 h2 h3 h4 h5 h6 h7]T

that relates two images, we can warp the perspective of image I2 to
match that of image I1, thereby aligning the backgrounds of both
images. However, estimating h from the raw pixel domain requires
finding point-to-point matches between a subset of the pixels of the
two images. In order to compute h, we propose to use the horizon-
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Fig. 1: Histograms of the horizontal (left) and vertical (right) motion
vectors of frame 26 of the Bus sequence. The red line indicates the
20% pixel cutoff we use to distinguish between the background and
foreground motion.

tal and vertical motion vectors (mx,my) that are readily available
from the compressed video bitstream or during the encoding process.
Here we assume that motion estimation is performed using the pre-
vious video frame as the only reference picture. The motion vectors
provide relatively accurate point matches between the two images.
Note, however, that we are only interested in matching pixels from
the moving background. Therefore, we first compute a 32 bin his-
togram of each of the motion vectorsmx andmy . Next, we extract a
subset Λ of the indices of pixels whose motion vectors are shared by
at least 20% of the pixels in the frame. Our assumption here is that
foreground objects correspond to less than 20% of the moving pixels
in the image. This threshold may of course vary between different
scenes and video sequences. We then use the motion vectors indexed
by Λ to estimate the homography parameter vector h by solving the
following least squares problem:

h = arg min
h̃

∥∥∥pΛ − Eh̃
∥∥∥

2
, (6)
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where pΛ =

[
x2Λ

y2Λ

]
, x2Λ = x1Λ +mxΛ, y2Λ = y1Λ +mxΛ, and

the matrix

E =
[

1 0 x1Λ y1Λ 0 0 −x2Λx1Λ −x2Λy1Λ

0 1 0 0 x1Λ y1Λ −y2Λx1Λ −y2Λy1Λ

]
,

where the subscript Λ indicates a restriction of the indices to the
set Λ. Fig. 1 illustrates the histograms and cutoff thresholds of the
vertical and horizontal motion vectors from frame 26 of the Bus se-
quence. Notice the spike at zero in the Mvx histogram that falls
under the 20% threshold. This spike corresponds to the bus in the
sequence which appears stationary relative to the camera perspec-
tive when in fact it is in motion. Our approach correctly captures the
motion of the background and fits the homography parameters to the
background pixels alone.

Next, we align the pictures relative to the perspective of the first
frame in a GOP by sequentially warping the pictures using the co-
ordinates of the previously warped frame Î1 as reference to warp
the coordinates of the next frame I2 by applying (5). Finally, we
note that due to the camera motion, the warped frames Î2 generally
occupy a larger viewing area relative to the reference frame I2. Con-
sequently, applying a forward map f : (x1, y1) → (x̂2, ŷ2) often
results in holes in the warped frame. To remedy this problem, we
compute the reverse mapping g : (x̂2, ŷ2) → (x2, y2) as a func-
tion of h and warp the frame to obtain Î2(x̂2, ŷ2) = I2(g(x̂2, ŷ2)).
Fig. 2 illustrates the global motion compensation procedure applied
to frame 26 of the Bus sequence.
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Fig. 2: Example of the global motion compensation procedure used
to align the backgrounds of images in a GOP. (a) First frame in the
GOP aligned and scaled to its relative location. (b) Original frame 26
as input image I2. (c) Frame 26 warped and aligned as Î2(x̂2, ŷ2),
(d) Warped and reverse mapped frame Î2(g(x̂2, ŷ2)).

4. BACKGROUND SUBTRACTION VIA FRMC

Once the images are warped and aligned using global motion com-
pensation, we vectorize the images and stack them into a matrix Y
of size m × n, where m is the number of pixels in the enlarged

GOP frame and n is the number of frames in the GOP. As shown
in Fig. 2 (a) and (d), the warped images contain large areas where
there are no intensity measurements. Therefore, we construct a re-
striction operator A that identifies the pixels that contain intensity
values. Applying A to Y results in a vector b = A(Y ) that only
contains the the pixels with intensity values. Our objective then is to
compute a low-rank approximation X of Y that should correspond
to the background pixels, and a sparse component S that captures
the moving objects in the scene, such that, ‖b−A(X + S)‖F ≤ σ
where σ is a user defined error tolerance.

4.1. FRMC in batch mode

In batch mode, disjoint groups of n video frames are warped and
aligned separately into matrices Yj , where j indicates the GOP num-
ber. The FRMC algorithm is then applied to each matrix Yj resulting
in the background matrix Xj and the foreground matrix Sj . Note
that every column of Sj is a vectorization of a single video frame
containing the moving objects in the GOP.

4.2. FRMC in online mode

In online mode, we first extract a background estimate X1 = L1R
T
1

using the first n > 1 video frames. The number n can be chosen to
satisfy a maximum delay requirement. For every subsequent frame
indexed by i = n + 1, . . . , N , we align Li−1 with the perspec-
tive of frame i to produce L̂i−1 and match the background Xi−1 =
Li−1R

T
i−1(1,→) to that of the new frame. We then perform a single

gradient update of (3) initialized with (L̂i−1, Ri−1(1,→)), where
Ri−1(1,→) is the first row in the matrix Ri−1.

In order to speed up the computation of the sparse component,
we replace (4) with a small number of approximate message passing
(AMP) [16] iterations

St+1 = η
(
St +AT zt, γ

)
,

zt+1 = b−ASt+1 + ‖St+1‖0
mn

zt
(7)

where z0 = b, S0 = 0, η is the soft-thresholding operator

η(x, γ) =

{
sign(x)(|x| − γ) |x| ≥ γ
0 otherwise ,

and γ is an adaptive threshold we set equal to the mode of the his-
togram of St.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our approach in
separating the background from video sequence with both stationary
and moving cameras. We ran the experiments using a pure MAT-
LAB implementation of our algorithm on a 3.2 GHz Intel Core i5
Mac with 16GB RAM. In all of our experiments, we set the rank of
the factors L and R equal to one since we found no demonstrable
improvement in performance that justifies the increased complexity
and memory requirements. Moreover, stationary background scenes
are rank one objects.

5.1. Stationary background

For stationary background scenes, we apply the FRMC algorithm
directly to the pixel domain, skipping the frame alignment. We test
our algorithm on the Shopping Mall video sequence1. Fig. 3 com-

1Available from:
http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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pares the qualitative separation performance of FRMC to that of the
state-of-the-art algorithm GRASTA [3]. The FRMC algorithm com-
pletes the recovery 7 to 8 times faster than GRASTA and results in
a comparable separation quality. For a quantitative comparison, we
plot the ROC curves of the two algorithms in Fig. 4. The curves
show that GRASTA achieves a slightly better accuracy than FRMC,
however, the computational cost is considerably higher.

Fig. 3: Background subtraction of four frames from the Shopping
Mall sequence. Row one shows the original four frames. Row two
shows the ground truth foreground objects. Row three shows the
output of the GRASTA algorithm which required 389.7 seconds to
complete. Row four shows the output of our FRMC algorithm run-
ning in batch mode and completing in 47.1 seconds. Row five shows
the output of the FRMC algorithm running in online mode and com-
pleting in 55.4 seconds.

5.2. Non-stationary background
For non stationary background sequences, we run our FRMC algo-
rithm with global motion compensation on the reference video se-
quence Bus composed of 150 CIF resolution (352 × 288 pixels)
frames2. The Bus sequence exhibits translation and zooming out.
We use the HEVC test model (HM) 11 reference software3 [17]
to encode the sequence and run our FRMC with GME algorithm
in batch mode with a batch size of 30 frames. The recovery per-
formance is illustrated in Fig. 5. Notice how the recovered back-
ground expands and stretches relative to the original frames in order
to cover the translation and zoom of the 30 frame GOP. Notice also
how stationary foreground objects are successfully classified as part
of the background subspace and are excluded from the segmented
moving objects. Finally, we note that we ran the t-GRASTA algo-
rithm [4] that performs an adaptive subspace estimation to capture
the variation in the background on the same video sequence. How-
ever, t-GRASTA failed completely at segmenting the moving ob-
jects.Moreover, statistical motion flow algorithms also struggle with
highly non stationary backgrounds.

2Available from: http://trace.eas.asu.edu/yuv/
3Available from: https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/
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Fig. 4: ROC curves comparing the stationary background subtrac-
tion performance between GRASTA and batch-FRMC.

Fig. 5: Background subtraction of four frames from the Bus se-
quence. Row one shows the original four frames. Row two shows
the motion aligned and FRMC separated background relative to a 30
frame GOP. Row three shows the motion aligned and FRMC sepa-
rated foreground. The total global motion compensation and back-
ground subtraction for 150 frames is 19.8 seconds.

6. CONCLUSION AND FUTURE WORK

We proposed a video background subtraction algorithm based on
robust matrix completion with global motion compensation. Our
FRMC algorithm decomposes a sequence of video frames into the
sum of a low rank background component and a sparse motion com-
ponent. The algorithm alternates between the solution of each com-
ponent following a Pareto curve trajectory for each subproblem. For
videos with moving background, we utilize the motion vectors ex-
tracted from the coded video bitstream to compensate for the change
in the camera perspective. Performance evaluations show that our
approach is faster than state-of-the-art solvers and results in highly
accurate motion segmentation for both stationary and non-stationary
scenes.. In fact, the algorithm can estimate the perspective param-
eters, align the frames, and segment CIF resolution videos at a rate
that exceeds 10 frames per second using a pure MATLAB imple-
mentation. For future work, we plan to analyze the convergence of
the FRMC algorithm and improve the matching performance of the
global motion compensation inspired by the new work of [18].
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