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ABSTRACT

In this paper we present a novel localization algorithm for use in
non-line-of-sight environments. We use the single bounce scatter-
ing model to model the non-line-of-sight propagations and estimate
the position of a mobile station when the observations are the
time-difference-of-arrival, the angle-of-departure, and the angle-
of-arrival. The proposed algorithm uses the geometry of the radio
propagation paths to estimate the position of the mobile station. An
iterative localization algorithm based on the linearization of the ob-
servation function using a first order Taylor series is also discussed.
The lower bound of the variance of an unbiased mobile station po-
sition estimator is determined using the Cramer-Rao lower bound.
The performance of the proposed algorithm is analyzed using mea-
surements from a real world indoor localization scenario and using
Monte-Carlo simulations. It is shown that the proposed algorithms
yield a satisfactory performance.

Index Terms— TDOA localization, NLOS, multipath environ-
ment, single bounce scattering

1. INTRODUCTION

Localization in terrestrial mobile radio systems is in general a chal-
lenging task. This is due to the fact that the signals in general do
not propagate directly from the transmitter to the receiver. The sig-
nals are usually reflected, diffracted, absorbed or scattered by mul-
tiple obstacles, referred to as scatterers, between the transmitter and
the receiver. This results in a multipath propagation. Classical lo-
calization techniques which work under the assumption of a line-
of-sight (LOS) propagation often result in a very poor performance
due to the non-line-of-sight (NLOS) propagations. Thus new local-
ization algorithms which account for the NLOS propagations have
to be developed. There are two major approaches for localization
in NLOS environments. They are the statistical and the paramet-
ric approach. The statistical approach is rather simple and assumes
that the NLOS propagations result in a positive bias to the measured
time-of-arrival (TOA) of the signals. Different approaches have been
investigated to identify and mitigate the NLOS bias in the measure-
ments [1]. The parametric approach, on the other hand, models the
NLOS propagation under the explicit consideration of the scatterers
[2, 3, 4, 5, 6]. In this paper, we employ the single bounce scattering
model, which is a simplified parametric model, and develop an algo-
rithm to estimate the position of a mobile station (MS) in an NLOS
localization scenario when the observations are the time-difference-
of-arrival (TDOA), the angle-of-departure (AOD) and the angle-of-
arrival (AOA). The AOD and the AOA refer to the angle of arrival
at the base station (BS) and at the MS, respectively. The TDOA, the
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AOD, and the AOA can be estimated using, e.g., the SAGE algo-
rithm [7] by using antenna arrays at the BS and the MS.

TDOA/AOD/AOA-based NLOS MS positioning and tracking
algorithms have not been adequately researched so far. TDOA ob-
servations can be used in cases when the clock of the MS is not
synchronized to the BSs. In [8] a TDOA/AOD/AOA-based NLOS
MS localization algorithm has been presented. An iterative algo-
rithm based on the linearization of the observation function using a
first order Taylor series has been used to estimate the MS position.
However, the convergence rate of the proposed localization algo-
rithm is very low due to randomly generated initial guess. Besides,
the accuracy of the proposed algorithm is very sensitive to the obser-
vation noise. In this paper, a novel TDOA/AOD/AOA-based NLOS
MS localization algorithm is presented which uses the geometry of
the radio propagation paths to estimate the MS position. A closed
form expression which estimates the position of the MS is derived.
An iterative algorithm using a linearization by the first order Taylor
series, which uses the initial MS position estimates from the above
proposed algorithm, is also presented. The Cramer-Rao lower bound
is also derived to assess the performance of the proposed methods.
The performance of the proposed method is also investigated using
measurements from a real world indoor localization scenario.

The present paper is organized as follows. In Section 2 the sys-
tem model of the NLOS MS localization is discussed. The pro-
posed localization algorithm and the Cramer-Rao lower bound are
presented in Section 3. The results of laboratory experiments and
Monte Carlo simulations are discussed in Section 4. Finally, a con-
clusion of this paper is drawn in Section 5.

2. SYSTEMMODEL

2.1. Single bounce scattering model

As discussed in Section 1 the single bounce scattering model is used
to model the NLOS propagations. In the single bounce scattering
model the first few arriving signals are assumed to have propagated
from the transmitter to a receiver after bouncing from a scatterer only
once [9]. It must be noted that the single scatterer is an effective scat-
terer which represents the effect of a cluster of scatterers or one large
scatterer within an area [10]. Signals from multiple bounce scatter-
ing arriving at the MS are safely neglected as they usually have small
signal power due to the severe attenuation caused by the multiple
scattering. The two step proximity detection algorithm presented in
[4] can be applied to detect and discard multiple bounce scattering
in practice. It shall be noted that the single bounce scattering model
includes LOS propagation as a special case if the virtual scatterer
lies on the line connecting the two nodes and the signal passes just
through the virtual scatterer.

Here we consider several BSs of known positions whereas the
positions of the scatterers and the position of the MS are unknown.
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Fig. 1: System model for one NLOS propagation path

It is assumed that the MS has an unsynchronized clock and hence
it is not possible to measure the NLOS propagation TOA. However,
the BSs shall be synchronized with each other. Thus the MS mea-
sures the TDOA of the signals from the different BSs. For simplic-
ity, we consider a single scatterer for each BS in the following. Thus
we have a BS and scatterer pairing which is denoted by subscript l,
l ∈ {1, 2, . . . , L}. However, in reality there are a multitude of scat-
terers which connect each BS to the MS. The proposed algorithm
can easily be generalized to the case where several scatterers need to
be considered by simply assigning more scatterers to the BSs.

Fig. 1 shows a three-dimensional (3D) system model of a single
bounce scattering scenario. For simplicity only the l-th BS located
at (xB,l, yB,l, zB,l), the l-th scatterer located at (xS,l, yS,l, zS,l) and
the MS located at (xM, yM, zM) are shown. The l-th BS and scat-
terer are denoted by Bl and Sl, respectively. The NLOS propagation
between the l-th BS and the MS is established via the l-th scatterer.

The path length dl, the path length difference δl, the azimuth
and elevation AOD ψl and αl, and the azimuth and elevation AOA
φl and βl are calculated as follows:

dB,l =
√

(xS,l − xB,l)2 + (yS,l − yB,l)2 + (zS,l − zB,l)2, (1)

dM,l =
√

(xS,l − xM)2 + (yS,l − yM)2 + (zS,l − zM)2, (2)
dl = dB,l + dM,l, (3)
δl = dl − d1, (4)

ψl =
π

2
(1− sgn(xS,l − xB,l)) + tan−1 yS,l − yB,l

xS,l − xB,l

, (5)

φl =
π

2
(1− sgn(xS,l − xM)) + tan−1 yS,l − yM

xS,l − xM

, (6)

αl =
π

2
− tan−1 zS,l − zB,l√

(xS,l − xB,l)2 + (yS,l − yB,l)2
, (7)

βl =
π

2
− tan−1 zS,l − zM√

(xS,l − xM)2 + (yS,l − yM)2
. (8)

The state vector θ contains the coordinates of the MS and the scat-
terers in the localization scenario.

2.2. Observation model

The observations are assumed to be noisy estimates of the path
length difference, the AOD, and the AOA. The observation vector
function h(θ) yields the path length differences, the AODs, and the
AOAs of the considered paths. The noisy observation vector z is
defined as

z = h(θ) +w, (9)
wherew is the observation noise which for simplicity is assumed to
be uncorrelated multivariate Gaussian distributed

w ∼ N (0,Rww). (10)
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Fig. 2: 2D localization scenario for two BSs and corresponding two
scatterers

Although the effective range of the AOD and the AOA is [0, 2π),
the Gaussian assumption is reasonable as shown in [11] where the
estimation error of the MUSIC algorithm was shown to be asymp-
totically multivariate Gaussian distributed with zero mean for suffi-
ciently large numbers of measurements.

3. ALGORITHM DERIVATION AND THE CRAMER-RAO
LOWER BOUND

3.1. Localizing principle

Fig. 2 shows a localization scenario containing two BSs and two
scatterers. A two-dimensional (2D) localization scenario is consid-
ered here for easier illustration of the localization process. From the
AOD observations, we can draw the line on which the scatterer is
located. However, since we have only the path length difference ob-
servations, the possible MS position considering a single path only
spans an infinite area in the localization plane. For easier visual-
ization, the possible MS positions for different possible path length
observations are drawn as a group of parallel lines for each BS and
corresponding scatterer as shown in Fig. 2. Now, considering the
path length difference observation, pairs of these lines belonging
to two different paths intersect at a point which is defined by the
path length difference. Consideration of all the possible intersection
points results in a line on which the MS is located. If we consider a
third BS and a third scatterer, we can get another line on which the
MS is located. The intersection point of these two lines on which
the MS is located is then the estimated position of the MS. Thus it
is possible to determine the MS position by considering three BSs
with one corresponding scatterer each. Extension of the localization
process to a 3D localization scenario is straightforward.

3.2. Formulation of the geometric algorithm

In this section we present the mathematical formulation of the local-
ization principle discussed in Section 3.1. From Fig. 1 the position
of the scatterers and the MS can be calculated as

xS,l = xB,l + dB,l sinαl cosψl, (11)
yS,l = yB,l + dB,l sinαl sinψl, (12)
zS,l = zB,l + dB,l cosαl, (13)
xM = xS,l − (dl − dB,l) sin βl cos φl

= xB,l + dB,lal,1 − (d1 + δl) sin βl cos φl, (14)
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yM = yS,l − (dl − dB,l) sin βl sinφl

= yB,l + dB,lal,2 − (d1 + δl) sin βl sinφl, (15)
zM = zS,l − (dl − dB,l) cosβl

= zB,l + dB,lal,3 − (d1 + δl) cos βl, (16)

where
al,1 = sinαl cosψl + sin βl cosφl, (17)
al,2 = sinαl sinψl + sin βl sinφl, (18)
al,3 = cosαl + cos βl. (19)

Finding the expression for dB,l from (14) results in

dB,l =
xM − xB,l + (d1 + δl) sin βl cos φl

al,1
. (20)

Using (20) to substitute dB,l in (15) and (16), we get

−xMal,2 + yMal,1 = −xB,lal,2 + yB,lal,1 + (d1 + δl)al,4, (21)

−xMal,3 + zMal,1 = −xB,lal,3 + zB,lal,1 + (d1 + δl)al,5, (22)
where

al,4 = sin βl sinαl sinψl − φl, (23)
al,5 = sin βl cos φl cosαl − cos βl sinαl cosψl. (24)

Generating similar equations for each of the BSs and the scatterers,
a matrixA can be defined as follows

A = (a1,a2, . . . ,a2L)
T , (25)

where
a2l−1 = (−al,2, al,1, 0,−al,4)

T , (26)
a2l = (−al,3, 0, al,1,−al,5)

T . (27)

Let us denote the unknowns by the quadruple

r = (xM, yM, zM, d1)
T , (28)

where d1 is a nuisance parameter here. The vector

b = (b1, b2, . . . , b2L)
T , (29)

denotes the knowns and it is defined as

b2l−1 = −xB,lal,2 + yB,lal,1 + δlal,4, (30)
b2l = −xB,lal,3 + zB,lal,1 + δlal,5. (31)

A system of linear equations can be constructed from (21) and (22)
usingA, r and b as

Ar = b. (32)
Due to the noisy estimates of the path length difference, the AOD
and the AOA, the position of the MS is estimated based on the noisy
versions of the matrix A and the vector b which are denoted by
Ã and b̃, respectively. Assuming that we have an over-determined
system of linear equations, the estimated MS position vector r̂which
minimizes the squared Euclidean distance

‖b̃− Ãr‖, (33)

is determined using the pseudo-inverse of the matrix Ã as

r̂ =
(
Ã

T
Ã

)
−1

Ã
T
b̃. (34)

Thus using (34) we can estimate the position of the MS based on
the geometry of the localization scenario. We refer to this as the
geometric algorithm.

3.3. Linearized least squares

Let p(z|θ) denote the conditional probability density function (pdf)
of the observation vector z given the state vector θ. The maximum
likelihood (ML) estimator θ̂ is then given by

θ̂ = arg max
θ

p(z|θ). (35)

Equation (35) is a nonlinear and nonconvex maximization problem
and it is difficult to find a closed-form solution. Iterative algorithms
can be used which solve (35) approximately given a good initial it-
eration point. We thus consider the linearized least squares (LLS)
algorithm which works by linearizing h(θ) using a first order Taylor
series and computing the weighted least squares solution iteratively
[12]. The state vector θ̂n+1 which maximizes (35), when the linear
approximation of h(θ) at θ̂n is used, is calculated as [12]

θ̂n+1 = θ̂n +
(
H

T
nR

−1
wwHn

)
−1

H
T
nR

−1
ww(z− h(θ̂n)), (36)

whereHn is the Jacobian matrix

H =
∂h(θ)

∂θ
(37)

evaluated at θ̂n. The LLS algorithm evaluates (36) iteratively until
a desired accuracy or a maximum number of iterations are reached.
The result of the geometric algorithm is used as an initial estimate.
If the LLS algorithm does not converge, the result of the geometric
algorithm will be used as the estimated MS position of the LLS al-
gorithm. The LLS algorithm is said to not converge if ‖θ̂n+1 − θ̂n‖
is greater than a predetermined threshold.

3.4. Cramer-Rao Lower Bound (CRLB)

The CRLB determines the lower bound of the covariance matrix of
an unbiased estimator θ̂ [13]. The CRLB is:

ξ = (HT
R

−1
wwH)−1, (38)

where H is the Jacobian matrix H defined in (37) evaluated at θ.
Even though the proposed estimators are biased, the CRLB is still
used as a performance bound. Simulation results have shown that
the estimation bias of the proposed algorithms is negligibly small
for the considered noise variances.

4. SIMULATION AND LABORATORY RESULTS

4.1. Simulation results

Let’s consider localization in a microcell scenario. The MS is as-
sumed to be positioned at (18, 24, 26) m. The positions of the four
BSs are (0, 0, 0) m, (11, 40, 9) m, (40, 20, 17) m, (15, 28, 23) m
and the positions of the corresponding scatterers are (11, 27, 19) m,
(35, 25, 30) m, (37, 17, 23) m, (12, 23, 33) m. The standard de-
viation of the observation noise for the path length difference and
the AOD and the AOA are denoted by σδ , and σang, respectively.
Monte-Carlo simulations have been carried out using 105 indepen-
dent trials. The performance criterion is the root mean square error
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the CRLB versus σδ , σang = 3◦
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Fig. 4: RMSE of the geometric algorithm and the LLS algorithm and
the CRLB versus σang, σδ = 3 m

of the MS position estimation ξ̂M which is calculated as

ξ̂M =

√
E{(x̂M − xM)2}+ E{(ŷM − yM)2}+ E{(ẑM − zM)2}

3
.

(39)
Fig. 3 shows the performance comparison of the geometric algo-

rithm and the LLS algorithm for different σδ when σang = 3◦. The
CRLB of the MS position estimation is also shown. The LLS algo-
rithm shows an improved performance compared to the geometric
algorithm. The performance curve of both the geometric algorithm
and the LLS algorithm are above the CRLB. Fig. 4 shows the perfor-
mance of the geometric algorithm and the LLS algorithm for differ-
ent σang when σδ = 3 m. It can be seen that the performance curve
of the proposed algorithms is above the CRLB. At low σang the LLS
algorithm shows a significant performance improvement over the ge-
ometric algorithm and it is close to the CRLB. However, at high σang

there is little or no performance improvement by the LLS algorithm
over the geometric algorithm. The LLS algorithm exhibits good con-
vergence due to the good initial guess from the geometric algorithm.
Initializing the LLS algorithm with a randomly generated value as in
[8] would result in a severe performance degradation. In both Fig. 3
and Fig. 4 it can be seen that consideration of more scatterers results
in a significant performance improvement.

4.2. Laboratory results

Here, we assess the performance of the geometric algorithm using
real world measurements in an indoor scenario. The measurements
have been performed in the microwave laboratory of the Institute
of Communications Engineering at the University of Rostock. The
panorama view from the MS towards the BS is shown in Fig. 5. We

BS

Fig. 5: Panorama view from the MS towards the BS

have considered a single BS and a single MS. The BS is located at
the origin whereas the MS is located at (−464, 6, 0) cm. The clock
at the BS and the MS are assumed to be not synchronized and hence
only TDOA observations are possible. Both the BS and the MS uti-
lize a virtual antenna array of 36 antennas to mimic a multi-antenna
station. The virtual uniform circular antenna array of radius 25 cm
is implemented using a single antenna on a rotating turn table. The
distance between two adjacent antenna positions is less than one half
of the wavelength. The carrier frequency of the transmitted signals
is 2.45GHz and their bandwidth is 100MHz. The channel transfer
functions (CTFs) of the radio channels between the BS and the MS
are measured using a vector network analyzer. The SAGE algorithm
[7] is applied to the measured CTFs to estimate the physical propaga-
tion path parameters, i.e., the TDOA, the AOD and the AOA. Table
1 shows the physical propagation path parameters obtained from the
SAGE algorithm for five selected NLOS propagation paths.

Table 1: The estimated path parameters

NLOS path, l ψl αl φl βl δl /cm
1 157.1◦ 78.3◦ 29.2◦ 73.4◦ 0
2 146.3◦ 77.2◦ 38.3◦ 75.1◦ 46.9
3 178.5◦ 74.8◦ 1.3◦ 70.7◦ -43.3
4 -153.9◦ 75.8◦ -27.4◦ 74.3◦ 9.4
5 -173.3◦ 73.6◦ 7.1◦ 73.1◦ -46.2

The geometric algorithm is applied to estimate the MS position
from the estimated physical propagation parameters shown in Table
1. The estimated MS position and the root square error (RSE) of
the geometric algorithm are shown in Table 2. It can be observed
that we can get a good performance from the geometric algorithm.
In accordance with the simulation results, increasing the number of
considered NLOS propagation paths significantly improves the per-
formance of the MS position estimation.

Table 2: The estimated MS positions and the corresponding RSE

NLOS paths Estimated MS position /cm RSE /cm
L = 3 (−389.2,−52.1,−33.1) 57.9
L = 4 (−391.4, 38.8, 17.3) 47.1
L = 5 (−410.0, 30.9, 5.3) 34.5

5. CONCLUSION

We have presented a practical localization algorithm to estimate the
position of an MS in an NLOS environment based on the TDOA,
the AOD and the AOA observations. The performance of the geo-
metric algorithm has been assessed using real world laboratory mea-
surements and by the help of Monte Carlo simulations. It has been
shown that the geometric algorithm results in a satisfactory perfor-
mance. The proposed iterative algorithm significantly improves the
estimates of the MS position.
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