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Abstract—We study an estimation problem where a fusion center
estimates a random parameter by using a partially connected network
of sensor nodes. The process involves two stages. In the collaboration
stage, the sensor nodes share their observations with their neighbors.
In the estimation stage, all the sensor nodes form a coherent beam
to the fusion center using the analog amplify-and-forward procedure.
In our previous work on this topic [1], a control center determines
the optimum collaboration strategy that is sent to the sensor nodes
prior to starting the two-stage procedure. In this paper, we develop
a new framework where the collaboration strategies are computed in
a decentralized manner using minimal communication with the control
center. This makes the sensor network more energy efficient and reduces
control channel communication requirements.

I. INTRODUCTION

For estimation applications in a wireless sensor network, multiple
sensor nodes send their observations in a coordinated manner to
a fusion center (FC) – so as to conserve energy resources while
achieving the desired accuracy of estimation. Several frameworks
(analog transmissions [2] vs quantization based [3]) and protocols
(distributed [4] vs collaborative [5]) have been considered by the
researchers so far. In this paper, we consider the analog amplify-and-
forward framework for transmission, which is widely used in the
literature [2],[4] due to its simplicity in implementation and provably
optimal information theoretic properties for simple networks [6].

Recent studies have indicated that sharing observations among
neighboring nodes prior to communication with FC, a protocol
termed as collaborative estimation [5],[1], can save significant energy
resources compared to distributed estimation, where no in-network
communication is permitted [3],[2]. In [1], we derived the optimum
energy-constrained collaboration strategy – which provides the pre-
cise weights that each node must use to combine and amplify their
neighbors’ observations, prior to transmission to the FC. This paper
is a continuation of [1] where we switch our focus from optimality
of the strategy to the other important aspect of computability.

While the optimal collaboration strategy guarantees energy effi-
ciency, it also poses a coordination challenge. Since the collaboration
weights are obtained by solving an optimization problem based on
a specific accuracy constraint (or equivalently, transmission energy
constraint, these two quantities represent a tradeoff), it turns out that
higher accuracy cannot be achieved by simply scaling the weights
of a previous strategy that was optimized for a lower-accuracy
requirement. Consequently, each time the accuracy requirement of
the application changes, the corresponding optimal strategies must
be centrally computed at some control center (CC) (possibly the FC
itself) and relayed back to the constituent nodes through a reliable
and separate control channel. In this paper, we seek to alleviate this
concern by exploring decentralized approaches for computing the
collaboration strategy.

Under our proposed methodology, the CC broadcasts only one
quantity (the cumulative energy to be used at a given time) to
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all the sensor nodes, based on the accuracy requirements of the
particular estimation session. Based on the cumulative energy, the
sensors communicate among themselves using only local interactions
in order to compute a reasonably efficient collaboration strategy. This
strategy is subsequently used by the nodes to combine/amplify their
neighbors’ observations during transmission to the FC. Since the
optimal collaboration strategy in [1] is not amenable for decentralized
computation, we explore three different strategies that can be com-
puted in the network – the first two strategies are efficient in the low
and high-energy regimes respectively and the third strategy, which
interpolates between the first two strategies, is reasonably efficient
across the entire energy regime. We compare the efficiency of the
aforementioned strategies vis-a-vis the optimal strategy. Due to the
decentralized computation of collaborative strategies, the network
requires less coordination with the CC and adapts faster to changes
in application requirements.
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Fig. 1. Wireless sensor network performing collaborative estimation.

II. PROBLEM FORMULATION

The estimation problem is depicted in Figure 1. The random
parameter to be estimated, θ, is assumed to be a zero-mean Gaussian
with variance η2. Different noisy versions of θ are observed by
N sensors. The observation vector is x = [x1, . . . , xN ] where
xn = hnθ + εn, with hn and εn denoting the observation gain and
measurement noise respectively. The measurement noise variables
{εn}Nn=1 are assumed to be independent and identically distributed
(iid) Gaussian random variables with zero mean and variance σ2.

The availability of collaboration links is represented by the sym-
metric adjacency matrix A, where Anm = 1 (or Anm = 0) implies
that node n has (or does not have) access to the observation of
node m. Corresponding to an adjacency matrix A and an A-sparse1

matrix W , collaboration is defined as individual nodes being able to

1Define an A-sparse matrix as one for which non-zero elements may appear
only at locations (n,m) for which Anm = 1. The set of all A-sparse matrices
is denoted by SA.
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linearly combine local observations from other collaborating nodes
zn =

∑
m∈Bn W nmxm, where Bn , {m : Anm = 1}, without

any further loss of information. In effect, the network is able to
compute a one-shot spatial transformation of the form z =Wx. In
practice, this transformation is realizable when any two neighboring
sensors are close enough to ensure reliable information exchange.

The transformed observations {zn}Nn=1 are transmitted to the FC
through a coherent MAC channel, so that the received signal is y =
gTz+u, where g and u describe the channel gains and the channel
noise respectively. The channel noise u is assumed to be Gaussian
distributed with zero mean and variance ξ2. The FC receives the
noise-corrupted signal y and computes an estimate of θ. Since y is
a linear Gaussian random variable conditioned on θ,

θ ∼ N (0, η2), and

y|θ ∼ N

 gTWh︸ ︷︷ ︸
,µ (net gain)

θ, gTWΣW Tg + ξ2︸ ︷︷ ︸
,ζ2 (net noise variance)

 ,
(1)

the minimum-mean-square-error (MMSE) estimator θ̂ = E [θ|y] is
the optimal fusion rule. From estimation theory (for details the reader
is referred to [7]), the MMSE estimator and resulting distortion DW

are given by

θ̂ =
1

1 + ζ2

η2µ2

y

µ
, and

1

DW
=

1

η2
+ JW , JW =

µ2

ζ2
, (2)

where the quantity JW is the Fisher Information and µ and ζ2 are
the net gain and net noise variance as defined in Equation (1). The
cumulative transmission energy required to transmit the transformed
observations z is

EW = E[zTz] = Tr
[
WExW

T
]
, where

Ex , E[xxT ] = η2hhT + Σ.
(3)

Note that the quantities µ, ζ2 and, therefore, the distortion D
(equivalently J) and also the required energy E depend on the
choice of the collaboration matrix W . To enable efficient resource
allocation, the CC can compute the optimal collaboration matrix
subject to a cumulative transmission energy constraint

W opt = arg min
W∈SA

DW , s.t. EW ≤ E , (4)

and communicate the corresponding weights W opt to the sensor
nodes via a separate and reliable control channel. The exact form of
W opt and corresponding Jopt were derived in [1] and are summarized
below. Here, L is the cardinality of A, which is also the number of
non-zero collaboration weights. In an equivalent representation, we
construct w ∈ RL by concatenating those elements of W that are
allowed to be non-zero. Accordingly, we define the L×L matrix Ω
and L×N matrix G such that the identities

Tr
[
WExW

T
]
= wTΩw, and gTW = wTG, (5)

are satisfied. The following result holds.

Theorem 1 (Optimal single-snapshot estimation, [1]): The
optimal Fisher Information is,

Jopt = h
T (Σ + Γ/Eξ)−1 h, where

Eξ , E/ξ2, and Γ ,
(
GTΩ−1G

)−1

,
(6)

which is achieved when the collaboration weights are

w = κwopt, wopt = Ω−1GΓ (Σ + Γ/Eξ)−1 h, (7)

with the scalar κ chosen to satisfy wTΩw = E .
Though (7) gives the optimal collaboration strategy, it cannot be

computed in the network in a decentralized manner. In this paper, we
look for strategies that can be computed by the sensor nodes with
the help of local interactions alone. Towards that end and inspired by
the optimal strategy (7), we evaluate two simpler strategies that are
optimal in specific energy regimes. In the low energy regime (E → 0),
we have wopt ∝ Ω−1Gh =: wL, while in the high energy regime
(E → ∞), we have wopt ∝ Ω−1GΓΣ−1h =: wH . We next ask
the question – are strategies wL and wH amenable for decentralized
computation? This paper answers this question in the affirmative.

While the strategies wL and wH are optimal in the low-energy
and high-energy regimes, it turns out that they are also highly sub-
optimal beyond those regimes. This implies that neither wL nor wH

is effective when the energy regime is subject to change in a particular
deployment. This leads us to the search for universal strategies that
are effective across the all energy regimes. As a potential candidate,
we evaluate a strategy that linearly interpolates betweenwL andwH ,
in particular, wU = αwL + (1 − α)wH , where α is chosen based
on the particular energy regime. Intuitively, α should decrease from
1 to 0 as the operational regime changes from low-energy to high-
energy. Also, once α is provided, we can clearly compute wU in a
decentralized manner. So the next questions is – what is an effective
way to select α such that the value of α itself can be computed in a
decentralized manner? Specifically, can the optimal value

argmin
α
DW , s.t. w ∝ αwL + (1− α)wH , EW ≤ E , (8)

be computed in a decentralized manner? This paper answers this
question in the affirmative as well.

III. MAIN RESULTS

A. Optimal interpolation for universal strategy

Before we focus on the decentralized computational aspects, we
summarize all the strategies discussed so far,

(Optimal) wopt = Ω−1GΓ (Σ + Γ/Eξ)−1 h
(Low-energy) wL = Ω−1Gh
(High-energy) wH = Ω−1GΓΣ−1h

(Universal) wU = αUwL + (1− αU )wH .

(9)

The first three strategies are well defined. The quantity αU in
the universal strategy results from solving the optimal interpolation
problem posed in (8).

Proposition 2 (Universal strategy): The solution to problem (8) is
given by

αU =
1

1 + Eξc4
, where Eξ ,

E
ξ2
, c4 ,

c21 − c2J0
J2
0 − c1c3

,

J0 , hTΣ−1h, c1 , hTΓ−1h,

c2 , hTΓ−1ΣΓ−1h and c3 = hTΣ−1ΓΣ−1h.

(10)

The proof of Proposition 2 is relegated to a future extended version
of this paper. It is worth reminding that implementation of all the
strategies in (9) involves appropriate scaling factors κ so as to satisfy
wTΩw = E . So clearly, κ depends on the operational regime E .
Since wL and wH are independent of E , it is possible to switch
operational regimes for the low-energy and high-energy strategies
just by recomputing the scaling factor κ. However, this is not the
case with the optimal and universal strategies – for wopt, the entire
vector needs to be recomputed when E needs changing (hence the
difficulty in decentralized implementation) while for wU , only one
other additional scalar term αU needs to be recomputed.

6560



B. Performance analysis through numerical simulations
Next, we perform a numerical experiment to compare the perfor-

mance of various strategies in (9) with that of the optimal strategy.
We simulate a random geometric graph of N = 20 nodes, with nodes
placed randomly in a unit square and collaborative links available for
node pairs within distance r = 0.3. The observation and channel
gains are random numbers chosen uniformly in the range hn ∼
U(0, 1), gn ∼ U(0, 1). The observation noise variance was chosen in
the range σ2

n ∼ U(0.5, 1.5) and channel noise variance set ξ2 = 1.
The variance of θ is chosen η2 = 0.1. With these parameters, the
minimum achievable distortion is D0 = 1/(1/η2+J0) ≈ 0.062. We
simulated the entire operational region by selecting 1000 uniformly
spaced values for D ∈ (D0, η

2) – which was wide enough to
cover both low-energy (high-distortion, D → η2) and high-energy
(low-distortion, D → D0) regimes, as depicted in Figure 2. For
each distortion value, we calculate the corresponding transmission
energy required under all four strategies. Since the optimal strategy
yields the lowest transmission energy by definition, we normalize
the other three energy values and plot the relative inefficiency value
(E(D)/Eopt(D) − 1) in terms of percentage. We observe from
Figure 2 that the low and high-energy strategies, though optimal
in their respective regimes can become highly suboptimal at the
opposite ends of their intended operating region – confirming the
notion that these strategies are not universal. In particular, the low-
energy strategy performs quite poorly in the vicinity of a distortion
threshold (marked Dlow) – below which it ceases to function at
all, no matter how much energy is used for transmission. This
threshold is actually limκ→∞DW with w = κwL, which is equal
to Dlow = 1/(1/η2 + c21/c2) ≈ 0.067. As expected, the universal
strategy performs consistently better than both the low and high-
energy strategies in the entire operational region. For this particular
example, the universal strategy seems to perform as well as the
optimal strategy for all distortion requirements. The inefficiency plot
is seen to peak near 1% before dropping off further towards the edges.
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Fig. 2. Efficiency of low-energy, high-energy and universal strategies

C. Decentralized computation
Decentralized message sharing protocols enable the computation

of different kinds of functions in a network. In this paper, we make
use of two such procedures, namely 1) distributed average consensus
(AC) and 2) optimization using alternating direction method of
multipliers (ADMM). While we refer the reader to [8] and [9]-
(Chapter 3) respectively for detailed discussions, we summarize

the key results below concerning AC and ADMM. The variable t
represents successive iterations.

Proposition 3 (Average consensus, [8]): Consider the problem to
compute the average pavg = 1

N
1Tp(0) at all nodes, where pn(0)

denotes a value available only to the nth node at the beginning of
iterations. Consider a matrix Q with elements Qnm such that p(t+
1) = Qp(t) represent distributed linear iterations of the form

pn(t+ 1) =
∑
m∈Bn

Qnmpm(t), n = 1, · · · , N, (11)

where Bn denotes the neighborhood set of node n (including itself).
Choose an appropriately sparse Q such that limt→∞Q

t = 1
N

11T .
Then limt→∞ p(t) = pavg1, i.e., limt→∞ pn(t) = pavg for all nodes.

When pre-scaled by N , AC can be used to compute the sum of
the initial values rather than the mean. We will use AC to compute
several sums in this paper.

Proposition 4 (ADMM, [9]-(Chapter 3) ): Consider the following
optimization problem with separable convex objectives functions Fn :
Rdn →R

min
N∑
n=1

Fn(pn), s.t. eTj p = sj , j = 1, · · · , J, (12)

where p = (p1, · · · ,pN ) and pn denotes a subvector of dimension
dn. Let vectors ejn denote the subvector of ej that corresponds to
pn, let I(j) be the set of indices n of subvectors pn that appear
in the jth constraint eTj p = sj , i.e. I(j) = {n|ejn 6= 0}. Then
problem (12) can be solved exactly in a distributed manner through
the following iterations

pn(t+ 1) = argmin
pn

{
Fn(pn) +

∑
j|n∈I(j)

{
λj(t)e

T
jnpn

+
c

2

(
eTjn (pn − pn(t)) + rj(t)

)2 }}
, (13a)

λj(t+ 1) = λj(t) + crj(t+ 1), j = 1, · · · , J, (13b)

rj(t) ,
1

|I(j)|

(
eTj p(t)− sj

)
. (13c)

The initial vectors p(0) and λ(0) can be arbitrary. The constant c can
be chosen via experiments to result in a desired convergence speed.

We now describe how to use the consensus and ADMM algo-
rithms to compute the three – low-energy wL, high-energy wH and
universal wU strategies, along with the appropriate scaling factors κ,
in a decentralized manner. It is assumed that, based on the quality
requirements, the cumulative energy E is known (broadcast by CC)
to all the individual nodes. In this paper, we ignore the cost of local
communications related to consensus/ADMM procedures and assume
that the strategies are computed without any errors. For a detailed
exposition on potentially lossy local communications in consensus
algorithms, the reader is referred to [10] and references therein.

Notations: In order to define Ω and G in Proposition 1, we
concatenate the elements of W column-wise (only those that are
allowed to be non-zero), and construct2 w = (wT1 , · · · ,wTN ) =
[w1, w2, . . . , wL]

T . The matrix Ω is formed from Ex by assigning
the submatrices Ex,Bn to ΩFn for all n. The matrix G is formed
from vector g by assigning the subvector gBn to GTn,n for all n.
We illustrate these notations through an example, in Figure 3, with
N = 3 nodes and 2 collaborating links, i.e., total L = 7 non-zero
coefficients.

2Subvector Bn denotes the neighbors of node n, ordered, including itself.
Subvectors Tn and Fn denote the w-indices such that Tn forms the nth
column of W and Fn forms the nth row of W . See Figure 3 for example.
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D. Low-energy strategy

Distributed computation of κLwL, i.e., the vector aligned to
wL = Ω−1Gh and scaled such that the cumulative energy is E , is
particularly simple. It turns out (refer to Figure 3 for an illustration of
notations) that the subvector wL,Fn reduces to gnΩ−1

Fn
hBn , which

can be computed independently by node n. The scaling factor κL is
determined by computingwT

LΩwL through consensus with a starting
value of wT

L,Fn
ΩFnwL,Fn at each node. Figure 4 illustrates the

aforementioned steps.
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E. High-energy strategy

In order to compute wH = Ω−1GΓΣ−1h, we use the following
well-known result concerning the minimization of a convex quadratic

objective function subject to linear constraints,{
argmax

w
wTΩw, s.t. GTw = v

}
= Ω−1GΓv, (14)

where Ω is positive definite and Γ =
(
GTΩ−1G

)−1
is assumed to

exist. In [11], an application of this result in the context of linear-
constrained-minimum-variance (LCMV) beamformers can be found.

Comparing the expression for wH with that of the solution in (14),
one can interpret wH to be the minimizer of wTΩw with constraint
GTw = vH , Σ−1h. Fortunately, this optimization problem can be
computed in a distributed manner using ADMM, since the objective
is separable wTΩw =

∑N
n=1w

T
Fn

ΩFnwFn . The nth constraint
evaluates to gTBnwTn = vH,n = hn/σ

2
n, which is also amenable

for distributed computation. The following notations establish the
equivalence between Proposition 4 and our problem: pn = wFn ,
Fn(x) = xTΩFnx, ej is jth column of G and sj = vH,j . In
addition, step (13a) can be shown to have a closed form solution, as
stated below.

Proposition 5: The following ADMM iterations exactly solves
problem (14),

wFn(t+ 1) =
gn
2

(
ΩFn +

cg2n
2
I

)−1

(cgnwFn(t)− crBn − λBn)

λn(t+ 1) = λn(t) + crn(t+ 1), ∀n (15)

rn(t) =
1

|Bn|

(
gTBnwTn − vH,n

)
, ∀n,

thereby enabling decentralized computation of wH .
The proof of Proposition 5 is relegated to a future extended version

of this paper. The constant c in our implementations was fixed at
1.0. For modest accuracy (residual error rn(t) of the order 10−4),
the ADMM converged very fast within tens of iterations. Such fast
convergence characteristic of ADMM is well known [12].

After wH = (wT
H,F1

, · · · ,wT
H,FN

) is computed, the scaling
parameter κH can be determined using consensus in order to ensure
that the cumulative energy is E . Figure 4 illustrates all the steps.

F. Universal strategy

The universal strategy linearly interpolates wL and wH as per
Proposition 2. Having obtained the two strategies already, it remains
to compute αU in a distributed manner – which in turn depends
on quantities J0 and c1, c2, c3. First, J0 = hTΣ−1h is computed
by performing consensus on h2

n
σ2
n

. In order to compute c1 and c2,
note that vL , Γ−1h = GTwL can be computed from wL using
local interactions. Thereafter, consensus on hnvL,n yields c1 and
consensus on σ2

nv
2
L,n yields c2. The quantity c3 = wT

HΩwH can
be computed by performing a consensus on wT

H,Fn
ΩFnwH,Fn once

the high-energy strategy is computed. Finally, after wU is computed,
the scale factor κU can be determined as in earlier cases. Figure 4
illustrates the various steps described above.

IV. CONCLUSION

In this paper, we developed a decentralized framework for dis-
tributed estimation with spatial collaboration. The motivation was to
reduce the control overhead of our earlier approach [6] by introducing
decentralized computation at the sensor nodes. We introduced three
strategies, two simple strategies that work very well near each
boundary of the entire distortion regime and a third strategy was
formulated by interpolating the previous two strategies. Numerical
simulations illustrated the efficiency of all the strategies. Theoretical
efficiency bounds for all these strategies remain an interesting topic
for future research. Also, the cost of decentralized computations will
be investigated in the future.
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