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place du Levant 2, B-1348 Louvain-la-Neuve, Belgium
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ABSTRACT

This paper derives the Ziv-Zakai lower bound (ZZLB) for the time

of arrival (TOA) estimation in the presence of one interfering pulse

from which no a priori knowledge is available. The bound is ob-

tained by including the interference in the system model but only the

transmitted pulse as a candidate for the likelihood ratio (LR) test. A

compact ZZLB expression that depends on the time delay and ampli-

tude of the interference is obtained. We compare the performance of

the first path maximum likelihood estimation (MLE) with the bound

as a function of the relative distance between the first path and the

interfering path.

Index Terms— Time of arrival estimation, Ultra wideband com-

munication, Interference, Ziv-Zakai lower bound

1. INTRODUCTION

Ultra-wideband (UWB) signals can provide very accurate position-

ing thanks to their short duration pulses [1, 2]. In most of the situa-

tions, the estimation of first path time of arrival (TOA) is corrupted

by the presence of interference. The interference, such as multi-

path (MP) interference or multiuser interference (MUI), can modify

the shape of the first path and hence, the estimation performance

changes. Moreover, the interference is sometimes stronger than the

first path, and then large estimation errors take place.

Some authors address the TOA estimation bounds in UWB

channels. In [3] the Cramèr-Rao lower bound (CRLB) is given for

the joint estimation of MP channel parameters . In [4] the CRLB is

given when up to three overlapping MP components are considered.

However, the joint estimation of all parameters is very complex and

becomes impractical. Moreover, the CRLB is only accurate at high

signal to noise ratio (SNR) or for long observation times [5].

Several papers investigate the Ziv-Zakai lower bound (ZZLB)

also for UWB channels. The ZZLB is a Bayesian bound well known

for taking into account the a priori distribution of the parameter and

correctly predicting the mean square error (MSE) behavior over the

whole range of SNR [6, 7]. The ZZLB is obtained by transform-

ing the estimation problem into a binary hypothesis testing problem
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with an associated probability of error. In [1, 8], ZZLBs for two

different cases are considered. First, a perfect measurement bound

(PMB) where the nuisance parameters are considered known non-

random variables, and second, a bound where the nuisance is a set

of random variables with known a priori distributions. Both bounds

are implemented for realistic UWB multipath channels by averaging

over a given number of channel responses (CR). In [9] the ZZLB is

derived for convolutive random channels with instantaneous channel

knowledge at the receiver, that is to say that the channel realization is

perfectly known at the receiver, while in [10] the topic is readdressed

considering that the receiver knows the a priori channel distribution.

Both papers model the channel as a taped delay line. In [11], ZZLB

is derived for MUI. The bound is obtained by handling a probability

of error averaged over the MUI distribution.

This paper investigates MSE lower bounds on the TOA in the

presence of one interfering pulse when no a priori knowledge about

the nuisance parameters governing the interference is available. In

the derivation of the bound we consider no channel knowledge at

the receiver. The transmitted signal is known to the receiver and its

TOA has a uniform prior distribution. Under this conditions, the log-

likelihood ratio (LLR) is computed in a situation where the received

signal contains interference but only the transmitted signal is a can-

didate for the associated hypothesis test. This differs from previous

ZZLB work, where all the multipaths are considered as a candidate.

A compact ZZLB expression that depends on the time delay and am-

plitude of the interference is obtained. This bound enables to express

the MSE as a function of the relative delay between the first path and

the interfering path, and of the amplitude ratio between both paths.

The bound is derived for a generic interfering pulse. If the ade-

quate pulse shape, relative delay, and amplitude ratio are employed,

more specific scenarios can be analyzed such as multipath propaga-

tion channels or multiuser channels.

The paper is organized as follows. In Section 2, we describe

the system model. In Section 3, we review the ZZLB. In Section

4, we derive the probability of error for the system model described

in Section 2 and derive the associate ZZLB. In Section 5 numerical

results are reported and discussed. Finally, Section 6 concludes the

paper.

2. THE SYSTEM MODEL

The UWB transmitted signal is
√
Etp(t), where p(t) is the Gaussian

pulse, normalized to satisfy
∫

+∞

−∞
p2(t)dt = 1, so that Et is the
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transmitted signal energy. The received signal is given by

r(t) = s(t− τ ) + si(t− τ − τi) + n(t)

=
√
Etαp(t− τ ) +

√
Etαipi(t− τ − τi) + n(t) (1)

where s(t) is the the received useful signal with amplitude α and

TOA τ , si(t) is the interference signal, pi(t) is the interfering

pulse, τi and αi are the time delay and amplitude of the interfer-

ing pulse, and n(t) is additive white Gaussian noise (AWGN) with

double sided spectral density N0/2. The interfering pulse pi(t),
whose shape can be different from p(t), is normalized to satisfy
∫ +∞

−∞
p2i (t)dt = 1. The time of arrival (TOA) τ is uniformly dis-

tributed on [0, T ]. For the particular situation where pi(t) = p(t),
we encounter the multipath case.

3. ZIV ZAKAI LOWER BOUND

In this section we present a short review of the ZZLB. ZZLB pro-

vides a bound on the MSE over the a priori probability density func-

tion (pdf). The full derivation of the bound can be found in [6, 7].

We are interested in a lower bound for the mean square estimation

error of the time delay

E{ǫ2} = E{(τ̂ − τ )2} (2)

where E{·} denotes the expected value. The ZZLB can be obtained

from the identity

E{ǫ2} =
1

2

∫

∞

0

Pr

(

|ǫ| ≥ h

2

)

hdh (3)

and lower bounding Pr
(

|ǫ| ≥ h
2

)

. The expression Pr
(

|ǫ| ≥ h
2

)

is

related to a binary detection scheme with equally probable hypothe-

ses

H1 : τ = a; r(t) = s(t− τ ) + n(t)|τ = a

H2 : τ = a+ h; r(t) = s(t− τ ) + n(t)|τ = a+ h (4)

when considering a suboptimal decision scheme where the parame-

ter is first estimated and a nearest-neighbor decision is made after-

ward

Ĥ =

{

H1, if τ̂ ≤ a+ h

2

H2, if τ̂ > a+ h

2
.

(5)

The probability of error for this suboptimum detector can be lower

bounded by the minimum error probability Pe(a, a + h) given by

the likelihood ratio (LR) test

Λ =
p(r(t)|a)

p(r(t)|a+ h)

H1

≷
H2

1. (6)

The term Pr
(

|ǫ| ≥ h

2

)

can be shown [7] to be greater or equal to
∫

∞

−∞

(pτ (a) + pτ (a+ h))Pe(a, a+ h)da, (7)

where pτ (τ ) is the pdf of the TOA. Given that pτ (τ ) follows a

uniform distribution in the interval [0, T ], the lower bound on the

estimation error can then be expressed as

E{ǫ2} ≥ ZZLB =
1

T

∫ T

0

h

∫ T−h

0

Pe(a, a+ h)dadh. (8)

Moreover, when Pe(a, a+h) is independent of a we can write Pe(h)
instead. Assuming this, the ZZLB is given by

ZZLB =
1

T

∫ T

0

h(T − h)Pe(h)dh. (9)

4. EVALUATION OF THE ZZLB

The minimum error probability Pe(a, a + h) is given by the LR

test from (6). The log-likelihood ratio (LLR) can be obtained upon

taking the logarithm

lnΛ = lnp(r(t)|a)− lnp(r(t)|a+ h) = ∆(a)−∆(a+ h) =
H1

≷
H2

1

(10)

where ∆(x) is the log-likelihood function of x with the constant

terms removed, and it can be written as

∆(x) = − 1

N0

∫ +∞

−∞

(r(t)− s(t− x))2 dt (11)

where r(t) is the signal corrupted with the interference, as intro-

duced in (1). The minimum error probability is then

Pe(a, a+ h) = Pr (lnΛ < 0|H1) Pr (H1)

+ Pr (lnΛ > 0|H2) Pr (H2)

=
1

2
Pr (lnΛ < 0|H1) +

1

2
Pr (lnΛ > 0|H2) , (12)

where equally likely hypotheses are assumed for the second equality.

The remaining probabilities can be obtained as

Pr (lnΛ < 0|H1)= Pr (∆(a)−∆(a+ h) < 0|τ = a) (13)

Pr (lnΛ > 0|H2)= Pr (∆(a)−∆(a+ h) > 0|τ = a+ h) .(14)

The log-likelihood function of a is then given by

∆(a) = − 1

N0

∫

+∞

−∞

(r(t)− s(t− a))2 dt

= − 1

N0

(Er + Es − 2Rsr(a)) , (15)

where Er =
∫

+∞

−∞
r(t)2dt and Es =

∫

+∞

−∞
s(t)2dt = Etα

2 are the

energies of r(t) and s(t) respectively, and

Rsr(a)=

∫

+∞

−∞

s(t− a)r(t)dt

=

∫ +∞

−∞

s(t− a) (s(t− τ ) + si(t− τ − τi) + n(t)) dt

=Rs(−τ + a) +Rssi(−τi − τ + a) + n0 (16)

where

Rs(x) =

∫ +∞

−∞

√
Etαp(t− x)

√
Etαp(t)dt

= Etα
2Rp(x) (17)

Rssi(x) =

∫ +∞

−∞

√
Etαp(t− x)

√
Etαipi(t)dt

= EtααiRppi(x) (18)

and n0 =
∫

+∞

−∞
s(t − a)n(t)dt. Rp(x) =

∫

+∞

−∞
p(t − x)p(t)dt

is the autocorrelation of p(t) and Rppi(x) =
∫

+∞

−∞
p(t− x)pi(t)dt

is the cross-correlation between the transmitted pulse p(t) and the

interference pi(t).
The log-likelihood function of a+ h is as follows:

∆(a+ h) = − 1

N0

∫

+∞

−∞

(r(t)− s(t− a− h))2 dt

= − 1

N0

(Er + Es − 2Rsr(a+ h)) (19)
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where

Rsr(a+ h)=

∫

+∞

−∞

s(t− a− h)r(t)dt

=Rs(−τ + a+ h) +Rssi(−τi − τ + a+ h) + n1

(20)

where n1 =
∫ +∞

−∞
s(t − a − h)n(t)dt. With (16) and (19) the

probability in (13) yields

Pr (lnΛ < 0|H1) = Pr (Rsr(a)−Rsr(a+ h) < 0|τ = a)

= Pr (S(h) + n < 0)) (21)

where

S(h) = Rs(0) −Rs(h) +Rssi(−τi)−Rssi(h− τi) (22)

and n = n0 − n1. In the same way, the probability in (14) leads to

Pr (lnΛ > 0|H2) = Pr (Rsr(a)−Rsr(a+ h) > 0|τ = a+ h)

= Pr (S(−h)− n < 0)) . (23)

The probability Pr (lnΛ < 0|H1) is readily given by

Pr (lnΛ < 0|H1) = Q

(

S(h)

σn

)

(24)

where Q(x) = (1/
√
2π)

∫

∞

x
exp(−t2/2))dt is the Q-function, ex-

pressed in terms of the complementary error function as Q(x) =
(1/2)erfc(x/

√
2). The noise variance σ2

n is equal to

σ2
n = E{(n0 − n1)

2} = E{n2
0}+ E{n2

1} − 2E{n0n1}

=
N0

2
Es +

N0

2
Es −N0Rs(h) = N0 (Es −Rs(h)) . (25)

The same can be done for Pr (lnΛ > 0|H2) and leads to

Pr (lnΛ > 0|H2) = Q

(

S(−h)

σn

)

. (26)

Note that none of the components from Pe(a, a + h) depend on a,

so we can express the minimum probability of error as

Pe(h) =
1

2

(

Q

(

S(h)

σn

)

+Q

(

S(−h)

σn

))

. (27)

The ZZLB is readily obtained from (9) by inserting the expression

of Pe(h) given in (27)

ZZLB =
1

T

∫ T

0

h(T − h)
1

2
Q

(

S(h)

σn

)

dh

+
1

T

∫ T

0

h(T − h)
1

2
Q

(

S(−h)

σn

)

dh. (28)

With a change of variable, h = −m, the second terms becomes

1

T

∫

−T

0

m(T +m)
1

2
Q

(

S(m)

σn

)

dm

=
1

T

∫

0

−T

|m|(T − |m|)1
2
Q

(

S(m)

σn

)

dm. (29)

Both terms can be unified in a single integral and the final expression

of the bound is obtained

ZZLB =
1

2T

∫ T

−T

|h|(T − |h|)Q
(

S(h)

σn

)

dh. (30)

The content of the Q-function can be further expanded as

S(h)

σn

=
Es −Rs(h) +Rssi(−τi)−Rssi(h− τi)

√

N0 (Es −Rs(h))

= α2Et

1−Rp(h) +
αi

α
(Rppi(−τi)−Rppi(h− τi))

√

N0α2Et(1−Rp(h))

=
√

SNR
1−Rp(h) +

αi

α
(Rppi(−τi)−Rppi(h− τi))
√

1−Rp(h)

(31)

where SNR = α2Et

N0
is the received signal to noise ratio.

We can evaluate the bound when no interference is present. For

αi = 0 the probability of error is as follows

Pe(h) = Q

(

√
SNR

1−Rp(h)
√

1−Rp(h)

)

= Q
(

√

SNR(1−Rp(h))
)

(32)

and the bound is equal to

ZZLB|αi=0 =
1

2T

∫ T

−T

|h|(T − |h|)Q
(

√

SNR(1−Rp(h))
)

dh

=
1

T

∫ T

0

h(T − h)Q
(

√

SNR(1−Rp(h))
)

dh (33)

where the symmetry of Rp(h) is applied. The bound matches with

the expression given in [6].

Another analysis can be made from (30). It can be shown that

when Rppi(x) is symmetric the same MSE is obtained for a delay

τi = θi and τi = −θi. By a change of variable, h = −m, the

expression (30) yields to

ZZLB =
1

2T

∫ T

−T

|m|(T − |m|)Q
(

S(−m)

σn

)

dm. (34)

Therefore, the term S(h) delivers the same bound as S(−h). Ob-

serving S(h) in (22), this is equivalent to mentioning that Rssi(h−
τi) generates the same bound as Rssi(−h − τi). Assuming that

Rppi(x) is symmetric, we can write Rssi(−h−τi) = Rssi(h+τi).
It can be then noticed that Rssi(h− τi) and Rssi(h+ τi) derive the

same MSE values. Since the only difference between the terms is

the sign preceding τi, we can write that

ZZLB|τi=θi = ZZLB|τi=−θi . (35)

when Rppi(x) is symmetric. Note that when the interfering pulse

pi(t) is equal to p(t) the cross-correlation Rssi(x) becomes equal

to the autocorrelation of p(t) and hence, it is always symmetric.

5. RESULTS AND DISCUSSION

In this section we present numerical and simulation results. For both

the pulse p(t) and the interfering pulse pi(t) the second derivative

of a Gaussian (doublet) is employed

p(t) = pi(t) =
1

√

3Tm/8

(

1− 4π

(

t

Tm

)2
)

e
−2π

(

t

Tm

)

2

(36)

where the pulse has been normalized and Tm is a variable that affects

the width of the pulse, which is set to 1 ns. The auto-correlation of

the doublet is

Rp(x) =

(

1− 4π

(

x

Tm

)2

+
4π2

3

(

x

Tm

)4
)

e
−π

(

x

Tm

)

2

. (37)
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The bound is compared with the performance of the first path maxi-

mum likelihood estimation (MLE). The estimator is as follows

τ̂ = argmax
τ

∫

∞

−∞

r(t)s(t− τ )dt. (38)

Figure 1 reports the root mean square error (RMSE) as a function of

the interference delay τi. The ZZLB and the MLE are shown for am-

plitude ratios
αi

α
= 0.5 and

αi

α
= −0.5, with delay τi ranging from

0 to 2.5 ns. The ZZLB when no interference is present (αi

α
= 0) is

also shown as a reference. The SNR has been fixed to 30 dB. From

the figure it can be noticed that the MLE performs close to the bound

for both cases. It can be observed that the RMSE varies noticeably

as the delay τi changes. Two main behaviors can be seen, on the one

hand situations where the RMSEs are close to the reference bound

(no interference) and on the other hand RMSEs that are many times

higher than the reference bound.

The first case is observable for values of τi around 0 and 0.5 ns.

For these time delays, a collision with the main or second lobe of

the interfering pulse occurs. Hence, the shape of the pulse is slightly

modified and only the received energy changes. When the interfer-

ing lobe has positive amplitude, a positive collision is taking place

and RMSEs below the reference bound are obtained. For negative

amplitude, the received energy decreases and worse RMSEs are ob-

tained, above the reference curve. For instance, at 0 ns the interfering

pulse with positive amplitude is generating a positive collision and

better RMSEs are obtained, whereas the negative pulse provoques a

destructive collision and worse estimates are observed. At 0.5 ns the

reversed situation takes place since the pulse of interest is affected

by the secondary lobe of the interfering pulse, which is negative for
αi

α
= 0.5 and positive for

αi

α
= −0.5.

The second case takes place for values of τi around 0.25 and

0.75 ns. To better understand this behavior, in Figure 2 the received

signal is shown when the interfering pulse parameters are
αi

α
= 0.5

and τi = 0.3 ns. From the figure it appears that the collision of

the first path and the interference generates a wider received pulse

shifted to the right around 0.1 ns. More accurately, in Figure 1 it

can be seen that the RMSE is equal to 0.08 ns, value consistent with

Figure 2. The collision of separeted pulses generates biased MLE

estimates which are correctly bounded by the ZZLB.

6. CONCLUSIONS AND FUTURE WORK

This paper has derived a ZZLB for the TOA estimation in the pres-

ence of one interfering pulse from which no a priori knowledge is

available. The bound has been obtained by including the interfer-

ence in the system model but only the transmitted pulse as a candi-

date for the LR test. A compact ZZLB expression that depends on

the time delay and amplitude of the interference has been obtained.

The bound has been illustrated as a function of the relative distance

between the first path and the interfering path and compared with the

performance of the MLE.

The bound is a unique framework to analyse the impact of mul-

tiuser interference, as well as the effect of multipath propagation

channels, on the ranging capabilities of UWB systems.

Future work will be devoted to extend the bound to more inter-

fering pulses by including them in the system model. The perfor-

mance on multipath and multiuser channels will be evaluated.
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