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ABSTRACT

We consider the situation where there are multiple audio sig-
nals whose relationship is of interest. If these signals have been dif-
ferently captured, the otherwise similar signals may be distorted by
fixed filtering and/or unsynchronized timebases. Examples include
recordings of signals before and after radio transmission and differ-
ent versions of musical mixes obtained from CDs and vinyl LPs. We
present techniques for estimating and correcting timing and channel
differences across related signals. Our approach is evaluated in the
context of artificially manipulated speech utterances and two source
separation tasks.

Index Terms— Audio Recording, Optimization, Source Sepa-
ration, Signal Reconstruction, Microphone Arrays

1. INTRODUCTION

There are a number of scenarios in which we may have several re-
lated audio signals that we would like to precisely align in order to
fully characterize their relationship, or to isolate their differences.
The signals may have a common source, but have been subjected to
different processing (including independent additions), or a single
acoustic event may have been recorded by multiple sensors yielding
related but different signals. We consider the problem of estimating
and correcting the relationship where both timing and channel have
been modified.

In the simultaneous capture setting, an acoustic scene is recorded
by separate devices. The sampling timebases of the resulting sig-
nals may not be synchronized and will frequently differ by several
hundred parts per million, depending on the quality of the quartz
oscillators used, which can amount to drifts of a second or more
over longer recordings. Miyabe et. al. [2] considered this problem
in the context of an ad-hoc microphone array composed of separate
devices. After performing a coarse estimation of the sample rate
offset, they apply optimal frame-level linear-phase filters to correct
sub-sample timing drift. They found that compensating for the
timing drift greatly improved performance in a source separation
task.

Signals containing a common source also occur in the domain
of blind source separation, where the separation algorithm may have
no way to identify a fixed coloration of a separated source. To ac-
commodate this, the BSS EVAL toolkit [1] estimates an optimal lin-
ear projection of the output onto target (and optionally interference)
components to obtain performance metrics invariant to fixed filter-
ing, given the original clean signal as a reference.
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Instrumental and a cappella “mixes” of pieces of popular mu-
sic are often released alongside the complete original mix. These
mixes contain only the non-vocal and vocal sources respectively
(in contrast with instrumental and a cappella arrangements, which
are non-vocal and vocal reinterpretations of the original composi-
tion). The comprehensive online music discography Discogs.com
lists over 200,000 releases containing an instrumental mix but only
about 40,000 which include an a cappella mix. The availability of
these separated mixes are crucial in the creation and performance
of some genres of music [3, 4, 5]. These instrumental and a cap-
pella versions can also be used as ground-truth for vocal removal or
isolation algorithms [6].

The disparity in the number of available instrumental and a cap-
pella mixes suggests that it would be beneficial to have a general
technique for removing or isolating the vocal track in a recording of
a piece of music when only one or the other is available. A simple
approach is proposed in [5] where an optimally shifted and scaled
instrumental mix is subtracted from the complete mix in the time
or frequency domain in attempt to obtain a (previously unavailable)
a cappella mix. However, this approach does not cover the more
general case where different mixes may be extracted from different
media (e.g. vinyl records and compact discs), which results in a
varying time offset as well as a media-specific channel distortion.
In addition, the different mixes may have differing equalization and
nonlinear affects applied [7], causing further channel distortion.

The process of isolating or removing vocals using an instrumen-
tal or a cappella mix can be viewed as a source separation prob-
lem with a great deal of prior information. While completely blind
source separation has seen a great deal of recent research focus,
systems incorporating prior information have also been developed.
For example, vocalized imitations [8] and artificially synthesized ap-
proximations [9] of the source of interest have been used as priors
to improve separation results. Similarly, exactly [10] and approxi-
mately [11] repeated patterns in a piece of music have been used to
improve the extraction of the remaining varying components.

We can formalize each of these settings by letting m[n], c[n] :
n ∈ Z be two discrete-time signals which are assumed to be sampled
from bandlimited underlying continuous signals ca(t) and ma(t),
and which have some content in common. We are interested in ex-
tracting information about their relationship, but there is undesirable
timing and channel distortion applied to c relative to m. Assume
thatm was captured with a constant sampling period of T , while the
sampling rate of c varies in time relative to m resulting in a time-
varying offset. We denote φ[n] as the offset (in real-valued samples)
of c relative to m at sample n. In the process of capturing these sig-
nals some channel distortion D relative to m was also applied to c,
so that

c[n] = D(ca((n+ φ[n])T )
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We are interested in estimating D−1 and φ−1 so we may remove the
channel distortion and sample rate drift present in c.

2. PROPOSED SYSTEM

In this section, we describe a general system for estimating the func-
tions D−1 and φ−1 described above. In particular, we model φ[n] as
a piecewise linear function in a two-step process by first estimating
any large-scale drift and then estimating local offsets betweenm and
c. We then estimate D−1 in the frequency domain by minimizing a
convex error function to obtain a complex filter which minimizes the
residual between m and c. Finally, we optionally use Wiener filter-
ing for post-processing when the distortion is substantially nonlinear.

2.1. Timing Offset

If the timing distortion caused by φ is particularly extreme (i.e.
highly nonlinear), the problem of reversing its effect may be in-
tractable. However, in the applications discussed in Section 1, the
nonlinear characteristics of φ are relatively mild. For example, in
the simultaneous capture setting, the primary contributor to φ is the
recorder’s clock drift, which will result in a predominantly linear
function of n. As a result, we model φ as a piecewise linear function.

We first attempt to compensate for the global difference in ef-
fective sampling rate by resampling c[n] as in [2]. A straightforward
way to choose the optimal resampling rate f∗ would be to maximize
the cross-correlation

f∗ = arg max
f

max
`

∑
n

m[n]Rf (c)[n− `]

where Rf (c) = ca(fnT ) denotes resampling c by a factor f . Un-
fortunately this problem is non-convex, so we perform a linear grid
search over a problem-specific range of values of f close to 1 to
obtain f∗.

Once we have obtained cR = Rf∗(c), we are left with the non-
linear effects of φ. We can estimate this function by computing the
local offset (in samples) of cR with respect to m at some regular
interval. In this way, we can obtain a sequence L[k] denoting the
offset of cR with respect to m at sample k. We can choose L[k] by
finding the lag ` which maximizes the cross-correlation between m
and cR in a small window around k. This process has also been used
to estimate and model the effect of radio transmission on a clean sig-
nal, where the recording of the received signal exhibited some timing
drift relative to the source [12]. Specifically, we set

L[k] = arg max
`

k+W∑
n=k−W

m[n]cR[n− `]

where `,W ∈ Z, and W controls the window over which we com-
pute the unbiased cross-correlation.

This optimization is non-convex and must therefore also be
solved using an exhaustive search. In practice, we constrain ` to
be in a range [−L,L] based on our experience of the largest offsets
encountered. Computing the cross-correlation is relatively expen-
sive, so, based on our assumption that φ is slowly-changing, we only
compute L[k] every K samples so that k = {0,K, 2K, . . .}. We
then assume a linear interpolation for intervening values; although
the computed values of L[k] will be integers, the interpolated val-
ues may be fractional. We can apply these offsets to construct
cO[n] = cR[n − L[n]] where we use windowed sinc interpolation
to calculate the non-integral sample values [13].

2.2. Channel Distortion

Our estimation of D is based on the assumption that it is a linear,
time-invariant filter; fortunately, in our applications of interest this
is a usable assumption. In the case of isolating or removing vocals
using available a cappella or instrumental mixes, much of the nonlin-
earity of D will be caused by the relatively minor effects (dynamic
range compression, excitation, etc.) applied during mastering. We
therefore can approximately invert D by estimating D−1 as a com-
plex filter H in the frequency domain.

To compute H , we can exploit the fact that our signals m and c
(and therefore cO) will be dominated by the same signal components
at least for a large number of time-frequency points (i.e., those in
which the additional components have zero or low energy). Thus we
are looking for an H which makes m very close to cO over as much
of the signal as possible. If we denote M [k] and CO[k] as the kth
frame of the short-time Fourier transform of m and cO respectively,
an intuitive approach would be to solve

H∗ = arg min
H

∑
k

|M [k]−H � CO[k]| (1)

where� indicates element-wise product and | · | indicates both mag-
nitude and L1 norm computation. This effectively requires that the
difference between M and CO filtered by H is sparse in the fre-
quency domain. The use of an L1 norm also results in the objective
being less sensitive to outliers (compared to e.g. an L2 norm), which
is important when we expect there to be components ofm not in c or
vice-versa. This approach has also been used for speech dereverber-
ation [14]. This objective function is a sum of independent convex
functions of each term H[i] of H and is therefore convex and can be
solved efficiently. In practice, we use the L-BFGS-B algorithm [15]
for minimization.

Once we have computed H∗, we can apply it to CO in the fre-
quency domain for each frame k to compute CF [k] = H∗ � CO[k]
from which we can obtain cF [n] by computing an inverse short-
time Fourier transform. If we are interested in the components of
m which are not in c (as in the source separation case), we can now
obtain their approximation by computing ŝ[n] = m[n]− cF [n].

2.3. Post-Processing

In cases where D is nonlinear and/or estimation of L is inaccurate
due to the interfering components, the estimation procedures de-
scribed above may not be able to exactly invert their effects leading
to residual interference in ŝ. However, provided that m and cF are
closely aligned in time, we can suppress components of c[n] which
remain in ŝ[n] using Wiener filtering. Specifically, if Ŝ is the short-
time Fourier transform of ŝ[n], let

R =
1

τ
(20 log10(|Ŝ|)− 20 log10(|CO|)− λ)

where τ is the Wiener transition and λ is the Wiener threshold, both
in deciBels. R is negative for time-frequency cells whereCO is large
relative to Ŝ. Thus, we can compute

Ω =
1

2
+

R

2
√

1 +R2

and we can further suppress compoents that align to energy in CO
by computing the inverse short-time Fourier transform of Ŝ � Ω.
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3. EXPERIMENTS

To test the effectiveness of this approach, we carried out three ex-
periments covering the applications mentioned in Section 1. First,
we reversed synthetic resampling and filtering applied to speech ut-
terances to mimic the conditions encountered in simultaneous cap-
ture settings. We then tested our technique for vocal isolation (i.e.
extracting the vocals from the full mix) and vocal removal on real-
world music data in both mildly and substantially distorted situa-
tions.

3.1. Synthetic Speech Data

In the simplest case, neither the timing distortion nor the channel dis-
tortion will be nonlinear. This closely matches a scenario when in-
dependent recorders are used to capture a dominant acoustic source.
Since this matches our assumptions, we expect to be able to undo
such distortion almost perfectly. To test this assertion, we generated
100 recordings by concatenating independent sets of 10 sentences
from the TIMIT corpus [16]. We then resampled each recording by
a random factor in the range [.98, 1.02] and convolved it with a ran-
domly generated 10-point causal filter h of the form

h[n] =


1, n = 0

e−nr[n], 0 < n < 10

0, n > 10

where each r[n] ∼ Normal(0, 1) is a Gaussian-distributed random
variable with mean 0 and variance 1.

For each of our synthetically distorted recordings, we estimated
D−1 and φ−1 using our proposed system. Because φ is strictly lin-
ear, we did not estimate L in this case (i.e., we set L[k] = 0 ∀k). All
utterances were sampled at 16 kHz and all short-time Fourier trans-
forms were computed with 16 ms Hann-windowed frames taken ev-
ery 4 ms. To evaluate our estimation of φ, we calculate the percent-
age error in our optimal resampling factor f∗. We can also determine
the extent to which we were able to reverse the effects of φ and D by
comparing the RMS of the residuals m[n]− c[n] and m[n]− cF [n].

Our system recovered the resampling factor exactly in 72 out of
100 cases; on average, the error between the estimated resampling
factor and the true factor was 1.6%. The average RMS across all
recordings of the residual m[n] − c[n] was 0.174, while the aver-
age RMS of m[n] − cF [n] was only 0.0162. The system had more
difficulty estimating the filter in the 28 cases where the resampling
factor was not estimated correctly; in these cases, the average RMS
of m[n] − cF [n] was 0.057. This suggests that even when φ is not
recovered exactly, we are still able to produce a reasonable estimate
of h. The frequency response H of a random filter and its estimate
Ĥ using the procedure outlined in Section 2.2 are shown in Figure
1.

3.2. Digital Music Separation

To test the importance of estimating φ and D in a real-world sce-
nario, we focused on the isolation and removal of vocals from music
signals using an instrumental or a cappella mix where all signals are
sourced from the same compact disc. In this setting, we do not ex-
pect any timing distortion φ because the signals should be derived
from the same sources without any steps likely to introduce timing
drift. As a result, we may be able to achieve good vocal isolation
or removal by simply subtracting the two signals at an appropriate
single time offset. However, differences in the processing applied to
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Fig. 1. Magnitude and phase response of an example of a randomly
generated filter h, generated as described in Section 3.1, alongside
the estimated filter ĥ. The deviations at high frequencies arise be-
cause the speech signals have virtually no energy in these regions.

the different mixes may make D substantial, making the estimation
of D−1 useful.

We extracted 10 examples of instrumental, a cappella , and full
mixes of popular music tracks from CDs to produce signals sam-
pled at 44.1 kHz. In order to compensate for any minor clock drift
caused during the recording of these signals, we estimated the op-
timal resampling ratio f∗ over a range of [.9999, 1.0001]. We then
estimated the local offsets every 1 second by computing the cross-
correlation over 4 second windows with a maximum allowable offset
of 100 ms. Finally, we computed the the optimal channel filter H∗

using short-time Fourier transforms with Hann-windowed 92.9 ms
frames (zero-padded to 186 ms) computed every 23.2 ms.

For each track, we estimated φ and D of the instrumental and a
cappella mix with respect to the original mix m[n] to obtain cF [n]
and computed ŝ[n] = m[n]− cF [n] to isolate or remove the vocals
respectively. Because we are assuming that there may be timing and
channel distortions in both the a cappella and instrumental mixes,
we also estimate the distortion in the to the “true” source s[n] to
obtain sF [n]. Wiener filter post processing was not needed or used
in this setting. The frequency response of a typical estimated channel
distortion filter H∗ is shown in Figure 2.

To measure the performance of our separation, we used SDR
(signal-to-distortion ratio) [1]. SDR computes the energy ratio (in
deciBels) of the target source relative to artifacts and interference
present in the estimated source. To examine the individual contribu-
tions of estimating φ and D, we computed the SDR of both m[n]−
cO[n] and m[n] − cF [n], and subtracted the SDR of m[n] − c[n]
to obtain an SDR improvement for each condition. All SDRs were
computed relative to sF [n]. Figure 3 shows these results, where each
line represents the SDR trajectory for a single example. Both tim-
ing and filter estimation gave separate improvements in most cases,
indicating both are necessary for these data, but there is substantial
variation among individual tracks.
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Fig. 2. Magnitude and phase response of a typical filter estimate H∗

of the channel distortion between an a cappella mix and the full mix.
The linear trend in the phase response indicates a sub-sample offset.
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Fig. 3. Improvement of SDR (in dB) due to inverting timing and
channel distortion. The SDR for each example at each stage was
normalized by the SDR ofm[n]−c[n] to show the relative improve-
ment caused by each step.

3.3. Vinyl Music Separation

A more challenging application for our technique arises when trying
to isolate or remove vocals using an instrumental or a cappella mix
which has been recorded on a vinyl record. The signal captured from
a vinyl recording will vary according to the playback speed, needle,
and preamplifier circuit which results in substantial timing and chan-
nel distortion. We carried out an experiment similar to Section 3.2
except that the instrumental and a cappella mixes used to extract and
remove the vocals were sourced from vinyl recordings. Both the
original mixes and the reference signals were extracted from com-
pact discs to minimize distortion present in our ground truth. Note
that there will be some timing and channel distortion of our refer-
ence signal relative to the original mix (as described in Section 3.2)
but the distortion present in the compact disc format is insubstantial
compared to that of the vinyl format.

To obtain digital representation of the vinyl recordings, we digi-
tized the playback of the record at a sampling rate of 44.1 kHz. The
original mix and ground-truth signals were extracted directly from
CDs also at 44.1 kHz. As above, we first estimated the resampling
ratio f∗ which optimally aligned the vinyl signal to the original mix,
except here we allowed for ratios in the range [0.98, 1.02]. We then
estimated the local offsets using the same process and parameters as
in Section 3.2. As expected, the resulting local offset sequencesL[k]
were often non-linear due to variance in the turntable motor speed.
An example of the short-time cross-correlation is shown in Figure 4.

Once the signals were aligned in time, we estimated the optimal
complex filter H∗ using the same procedure as in Section 3.2. How-
ever, due to the substantial nonlinearities present in vinyl recordings,
the resulting sequence cF [n] did not sufficiently cancel or isolate
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Fig. 4. Local cross-correlation of m against cR. Lighter colors in-
dicate larger correlation, with black circles indicating the maximum
correlation. The grey region between 105 and 125 seconds corre-
sponds to a portion of c which has low energy.

the vocals when subtracted from m[n]. Thus, we further applied
the Wiener filter post-processing of Section 2.3, based on short-time
Fourier transforms with 46 ms Hann-windowed frames computed
every 12 ms, and using a threshold λ = 6 dB over a τ = 3 dB
transition.

We carried out this procedure for 14 tracks, 7 each of vocal iso-
lation and removal. The resulting SDRs are presented in Table 1.
In general, our approach was extremely effective at removing vo-
cals. For reference, typical SDRs achieved by state-of-the-art blind
source separation algorithms (which are disadvantaged because they
do not exploit any prior information) are around 3 dB [6, 11]. The
SDRs for the vocal isolation examples were generally lower, which
is likely due to the more varied frequency content of the instrumental
component we are trying to remove. As a result, we also computed
the SDR for the vocal extraction examples after high pass filtering
the extraction with a 24 dB/octave filter with cutoff set at 216 Hz, as
is done in [11]. This improved the SDR by about 1 dB in all cases.

Task Mean ± SDR

Vocal Removal 11.46 ± 3.59 dB
Vocal Isolation 5.14 ± 1.69 dB

Vocal Isolation (Filtered) 6.37 ± 1.46 dB

Table 1. Mean and standard deviations of SDR values for vocal re-
moval and isolation using instrumental and a cappella mixes sourced
from vinyl records.

4. CONCLUSION

We have proposed a technique for estimating and reversing timing
and channel distortion in signals with related content and proved
its viability in settings of varying difficulty. In particular, we ap-
proximated the timing distortion with a piecewise linear function by
computing local offsets and estimated the channel distortion with a
complex frequency-domain filter found by solving a convex mini-
mization problem. All of the code and data used in our experiments
is available online so that the proposed techniques can be easily ap-
plied to any situation where precise alignment and channel distortion
reversal of related signals is needed.1

1http://github.com/craffel/remixavier
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