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Abstract— Two novel subspace-based blind channel estimation
methods for orthogonally coded multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM)
systems with more than two transmit antennas are proposed in
this paper. The proposed methods exploit the null space induced
by the orthogonal space-time block codes (OSTBC). They can be
applied to systems with one or more receive antennas. Simulation
results show that accurate estimates can be obtained.

Index Terms—OFDM, MIMO, orthogonal space-time block
code (OSTBC), blind channel estimation

I. INTRODUCTION

In recent years, space-time block coding (STBC) has

emerged as a powerful approach to exploit spatial diversity and

to combat fading in multiple-input multiple-output (MIMO)

wireless communication systems. In 1998, Alamouti’s code

for two transmit antennas [1] has been incorporated as a

simple and efficient transmit diversity technique. STBC with

orthogonal designs for any number of transmit antennas was

proposed in [2]. The combination of orthogonal space-time

block codes (OSTBC) and orthogonal frequency division

multiplexing (OFDM), or simply OSTBC-OFDM, has drawn

much attention because it attains the maximum transmit di-

versity and has a simple maximum likelihood (ML) receiver

structure. It is known that the performance of MIMO-OFDM

systems critically depend on the accuracy of the estimated

channel responses. Many channel estimation methods have

been proposed in the past. Our paper focuses on blind channel

estimation.

Most of the existing blind MIMO channel estimation meth-

ods can only deal with flat fading channels [3] [4]. The OFDM

system converts the frequency-selective MIMO channel into

many flat-fading subcarriers in MIMO-OFDM systems. The

subcarrier-wise approach may suffer from a prohibitively high

computational complexity when the number of subcarriers is

large. A coherent approach was proposed in [5] for blind

channel estimation for orthogonally coded MIMO-OFDM

systems with more than 2 transmit antennas. Because the

approach is based on convex optimization and amounts to

solving a semidefinite program (SDP), its computational cost

may be rather high. In [6], the authors proposed a lower

computational-complexity method. The method gives a good

performance but it works only when there are more than one

receive antenna.

This work was supported by National Science Council, Taiwan, R.O.C.,
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Fig. 1: Block diagram of OSTBC-OFDM system

In this paper, we propose two new algorithms for blind chan-

nel estimation. In the first part, we propose a new subspace-

based method for blind channel estimation in MIMO-OFDM

systems with more than 2 transmit antennas. The proposed

method exploits the null space induced by the OSTBCs with

rate less than one. The method works even when there is

only one receive antenna. In the second part, we introduce

a modification of the proposed method so that fewer received

blocks are needed. The minimum number of received blocks

needed can be as small as one for most practical systems.

Numerical simulation is also given to verify the performance

of the proposed methods.

This paper is organized as follows. The system model

of OSTBC-OFDM is introduced in Section II. In Section

III, we propose a subspace-based method that can estimate

channel using noise subspace. In Section IV, we propose a

modified estimation method which requires fewer received

blocks. Simulation results are presented in Section V and

concluding remarks are provided in Section VI.

Notation: In this paper, the symbols AT , A∗, and A† denote

the transpose, the complex conjugate, and the conjugate-

transpose of matrix A respectively. The symbol ⊗ denotes

the Kronecker product and ‖ · ‖F denotes the Frobenius norm.

II. SYSTEM MODEL

In this paper, we consider MIMO-OFDM systems employ-

ing OSTBC. The block diagram of OSTBC-based MIMO-

OFDM system model is shown in Fig. 1, where Mt and

Mr denote the numbers of transmit and receive antennas

respectively. For each OFDM transmitter, let N and L be

respectively the size of the discrete Fourier transform (DFT)

and the length of the cyclic prefix (CP). Let us denote the

transmission matrix of the OSTBC by the T ×Mt matrix G.
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For example, the 4 × 3 transmission matrix for 3 transmit

antennas with 3 information symbols is

G3(k) =

⎡
⎢⎢⎣

s1(k) s2(k) s3(k)
−s∗2(k) s∗1(k) 0
s∗3(k) 0 −s∗1(k)
0 −s∗3(k) s∗2(k)

⎤
⎥⎥⎦ (1)

for k = 0, 1, . . . , N − 1, where k denotes subcarrier index

and si(k) is the ith modulation symbol transmitted on the kth

subcarrier. The OSTBC in (1) has a rate of R = 3/4.

Assume that the channel orders do not exceed the CP length

L and they do not vary during the transmission time of T . Then

at the receiver, the kth subcarrier received signal of the mrth

antenna is given by

ymr,t(k) =

Mt∑
mt=1

Hmt,mr
(k) [G(k)]t,mt

+ qmr,t(k) (2)

for 0 ≤ k < N , 1 ≤ t ≤ T , and 1 ≤ mr ≤ Mr, where

Hmt,mr
is the frequency response of the channel between

the mtth transmit antenna and the mrth receive antenna, and

qmr,t(k) is the noise which is assumed to be an additive white

Gaussian noise (AWGN) with variance σ2
n. For clarity, in this

paper we derive our results for the case of 3 transmit antennas

and 1 receive antenna (Mt = 3 and Mr = 1). The proposed

method can easily be extended to other OSTBCs with Mt ≥ 3.

Extension to the case of Mr > 1 will be explained at the end

of each section.

III. PROPOSED BLIND CHANNEL ESTIMATION

Consider an OSTBC-OFDM system with Mt = 3 and

Mr = 1. Utilizing (1) and (2), the 4 received signals, ymr,t(k)
for t = 1, 2, 3, 4, at the kth subcarrier in (2) can be written as

(For simplicity, we drop the subscript mr.)

y(k) �

⎡
⎢⎢⎣

y1(k)
y2(k)
y3(k)
y4(k)

⎤
⎥⎥⎦ = H(k)

⎡
⎢⎢⎢⎢⎢⎢⎣

s1(k)
s2(k)
s3(k)
s∗1(k)
s∗2(k)
s∗3(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
s(k)

+

⎡
⎢⎢⎣

q1(k)
q2(k)
q3(k)
q4(k)

⎤
⎥⎥⎦

︸ ︷︷ ︸
q(k)

, (3)

where

H(k)=

⎡
⎢⎢⎣

H1(k)H2(k)H3(k) 0 0 0
0 0 0 H2(k) −H1(k) 0
0 0 0 −H3(k) 0 H1(k)
0 0 0 0 H3(k) −H2(k)

⎤
⎥⎥⎦ .

(4)

Note that one OSTBC-OFDM block consists of 4 OFDM

symbols for t = 1, 2, 3, 4. Assume that we have collected J
received blocks (TJ OFDM symbols) and let the superscript
(i) denote the block index. Stacking the J blocks together, we

form

Y(k) �
[
y(1)(k) y(2)(k) · · · y(J)(k)

]
. (5)

Utilizing (3), we can write

Y(k)=H(k)
[
s(1)(k) · · · s(J)(k) ]︸ ︷︷ ︸

S(k)

+
[
q(1)(k) · · · q(J)(k)

]︸ ︷︷ ︸
Q(k)

.

(6)

Assuming that the signal and noise are uncorrelated, we have

Y(k)Y†(k) = H(k)S(k)S†(k)H†(k) +Q(k)Q†(k). (7)

Note that the 4 × 6 matrix H(k) has rank equal to 3 only.

There exists a nonzero vector

v(k) =
[
v0(k) v1(k) v2(k) v3(k)

]T
(8)

such that v†(k)H(k)S(k)S†(k)H†(k)v(k) = 0. Suppose that

J is large enough so that S(k)S†(k) has full rank. It implies

that v(k) satisfies v†(k)H(k) = 0, which is equivalent to:⎡
⎢⎢⎢⎢⎢⎢⎣

v∗0(k) 0 0
0 v∗0(k) 0
0 0 v∗0(k)
0 v∗1(k) −v∗2(k)

−v∗1(k) 0 v∗3(k)
v∗2(k) −v∗3(k) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�V∗(k)

⎡
⎣ H1(k)

H2(k)
H3(k)

⎤
⎦ = 0. (9)

Combining all N subcarriers, we have⎡
⎢⎢⎢⎢⎣

V∗(0) 0 · · · 0

0 V∗(1)
. . .

...
...

. . .
. . . 0

0 · · · 0 V∗(N − 1)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Ṽ∗

h̃f = 0, (10)

where h̃f = [H1(0), H2(0), H3(0), H1(1), H2(1), H3(1), . . . ,
H1(N − 1), H2(N − 1), H3(N − 1)]T . h̃f can be written as

h̃f=

⎡
⎣IN⊗

⎡
⎣ 1
0
0

⎤
⎦ IN⊗

⎡
⎣ 0
1
0

⎤
⎦ IN⊗

⎡
⎣ 0
0
1

⎤
⎦
⎤
⎦
⎡
⎣ hf

1

hf
2

hf
3

⎤
⎦ , (11)

where hf
i = [ Hi(0) Hi(1) · · · Hi(N − 1) ]T . Assume

that the channel orders do not exceed the CP length L. Then

we can write⎡
⎣ hf

1

hf
2

hf
3

⎤
⎦ = (I3 ⊗WL+1)

⎡
⎣ h1

h2

h3

⎤
⎦

︸ ︷︷ ︸
h

, (12)

where WL+1 is the first L + 1 columns of the

DFT matrix W and the (L + 1) × 1 vectors hi =
[ hi(0) hi(1) · · · hi(L) ]T contain the channel impulse

responses for i = 1, 2, . . . ,Mt. Therefore, (10) can be rewrit-

ten as

Ṽ∗W̃L+1h = 0, (13)
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where (Note that we have used the formula (A⊗B)(C⊗D) =
(AC⊗BD) to get the following expression)

W̃L+1=

⎡
⎣WL+1⊗

⎡
⎣ 1
0
0

⎤
⎦WL+1⊗

⎡
⎣ 0
1
0

⎤
⎦WL+1⊗

⎡
⎣ 0
0
1

⎤
⎦
⎤
⎦ . (14)

The channel h can be obtained by (13).

In practice, there is the channel noise Q(k) in (6). We can

estimate v(k) by

v̂(k) = arg min
‖v(k)‖2

F=1
v†(k)Y(k)Y†(k)v(k) (15)

and form the matrix Ṽ using the estimates v̂(k). Then the

channel can be estimated (up to a scalar ambiguity) as

ĥ = arg min
‖h‖2

F=Mt

h†W̃†
L+1Ṽ

T Ṽ∗W̃L+1h. (16)

Remarks:
(i) It can be verified (proof omitted due to space limitation)

that the channel matrix H(k) in (4) does not have full row rank

when the underlying OSTBC has rate R < 1. It was proved

in [7] that the rate of complex orthogonal designs for more

two transmit antennas is always less than one. Therefore, the

proposed method can be applied to all OSTBC-OFDM systems

with more than two transmit antennas.

(ii) When Mr ≥ 2, we can stack all received signals with

the kth subcarrier. So (3) becomes

y̌(k) �

⎡
⎢⎢⎢⎣

y1(k)
y2(k)

...

yMr
(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H1(k)
H2(k)

...

HMr
(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Ȟ(k)

s(k) +

⎡
⎢⎢⎢⎣

q1(k)
q2(k)

...

qMr
(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
q̌(k)

,

(17)

where yi(k), Hi(k), and qi(k) are the corresponding terms

at the ith receive antenna. By the result of remark (i), Ȟ(k)
does not have full row rank when Mt ≥ 3. Following a similar

derivation, we can obtain an expression of channel estimate ĥ
similar to (16).

(iii) For some OSTBCs, the dimension of the left null space

of H(k) can be larger than 1. In this case, there exist more than

one linearly independent vector v1(k),v2(k), . . . ,vm(k) such

that v†
i (k)H(k) = 0. Then we can form Ṽ∗

1, Ṽ
∗
2, . . . , Ṽ

∗
m in

(10) for each null vector. Hence, the channel can be estimated

by

ĥ = arg min
‖h‖2

F=Mt

h†W̃†
L+1

(
m∑
i=1

ṼT
i Ṽ

∗
i

)
W̃L+1h. (18)

(iv) Assume that the channels h1, h2, and h3 have no

common factor and at least one of the channel orders is equal

to the CP length L. Then it can be shown that the channels can

be uniquely identified up to a scalar ambiguity, or equivalently,

ĥ = ch for some scalar c. The proof is omitted due to the

limitation of space.

IV. A MODIFIED ESTIMATION METHOD WITH FEWER

RECEIVED BLOCKS

The method proposed in Section III works only when the 6×
6 matrix S(k)S†(k) in (7) have full rank. Thus, the minimum

number of the received blocks is J = 6. Since there are T
OFDM symbols for each space-time block, we need to collect

6T OFDM symbols for channel estimation. In this section, we

propose a modified method for channel estimation with fewer

received blocks.

Let us rewrite (9) as

v∗0(k)H1(k) = v∗0(k)H2(k) = v∗0(k)H3(k) = 0,

v∗1(k)H2(k) =v∗2(k)H3(k),

v∗1(k)H1(k) =v∗3(k)H3(k),

v∗2(k)H1(k) =v∗3(k)H2(k).

(19)

Assume that H1(k), H2(k), and H3(k) are not all zero (i.e.,

the channels have no common zero at the DFT frequencies.)

From (19), we have the relation⎡
⎢⎢⎣

v∗0(k)
v∗1(k)
v∗2(k)
v∗3(k)

⎤
⎥⎥⎦ = αk

⎡
⎢⎢⎣

0 0 0
0 0 1
0 1 0
1 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
�P

⎡
⎣ H1(k)

H2(k)
H3(k)

⎤
⎦ , (20)

where αk is a nonzero scalar. In the absence of noise, we get

v†(k)Y(k)Y†(k)v(k) = 0. Utilizing (20), we obtain

[
H∗

1 (k) H∗
2 (k) H∗

3 (k)
]
P†Y∗(k)YT (k)P

⎡
⎣H1(k)
H2(k)
H3(k)

⎤
⎦= 0.

(21)

Stacking all vectors together, (21) can be written as(
h̃f
)†

(IN ⊗P)
†
Ω (IN ⊗P) h̃f = 0, (22)

where h̃f is defined in (10) and

Ω�

⎡
⎢⎢⎢⎢⎣
Y∗(0)YT(0) 0 · · · 0

0 Y∗(1)YT(1)
. . .

...
...

. . .
. . . 0

0 · · · 0 Y∗(N−1)YT(N−1)

⎤
⎥⎥⎥⎥⎦ .

(23)

From (14), we define a NT ×Mt(L+ 1) matrix

F � (IN ⊗P)W̃L+1. (24)

Utilizing (11), (12), (22), and (24), we conclude that the

channel (up to a scalar ambiguity) can be estimated as

ĥ = arg min
‖h‖2

F=Mt

h†F†ΩFh. (25)

Notice that a necessary condition for the uniqueness is that the

rank of Ω is larger than or equal to Mt(L+ 1)− 1. Assume

that we have collected J received blocks to form Ω. Then

the rank of Ω is N ×min{J,Mt}, so the necessary condition

becomes min{J,Mt} ≥ (Mt(L+1)−1)/N . In practice, N is
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Fig. 2: Comparison of the MSE performance with single receive
antenna (Mr = 1)

usually much larger than L. Therefore, the minimum number

of blocks needed is

J ≥ Mt(L+ 1)− 1

N
.

For many systems, this minimum number can be as small as

J = 1.

Remark: The method can be extended to the case of Mr >
1 by stacking together all the channel taps for mr =
1, 2, . . . ,Mr. The details are omitted due to the limitation of

space.

V. SIMULATION RESULTS

We assume that the channel does not change while channel

estimation is performed. Channel taps are generated as inde-

pendent and identically distributed (i.i.d.) random variables.

The channel noise is AWGN and the transmission symbols

are modulated by 16 points quadrature amplitude modulation

(16-QAM). Two cases of the numbers of blocks are considered

(i) J = 1; (ii) J = 10.

The OFDM block size is N = 64, and the length of CP is

L = 4. The number of transmit antennas is Mt = 3, and the

rate R = 3/4 OSTBC in (1) is used.

The mean square error (MSE) is defined as

MSE =
1

Nruns

Nruns∑
i=1

‖cĥ− h‖2F
‖h‖2F

,

where the factor c = (ĥ†h)/(‖ĥ‖2F ) and Nruns = 2000
denotes the total number of Monte Carlo trials.

First assume that the number of receive antenna is Mr = 1.

In Fig. 2, we plot the performances of the subspace-based

methods in (16) and (25), and Sarmadi’s algorithm of [6]. We

observe that Sarmadi’s algorithm does not work in Mr = 1
case. For the case of one block (J = 1), (16) can not work

since the matrix S(k)S†(k) in (7) does not have full rank.

On the other hand, the simulation shows that the modified
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Fig. 3: Comparison of the MSE performance with multiple receive
antennas (Mr = 3)

method (25) requires only one receive OSTBC-OFDM block

to obtain good estimation performance. For the case of ten

blocks (J = 10), the performance of (25) is little better than

that of (16).

Next we consider the case of multiple receive antennas

Mr = 3. Fig. 3 shows the results. We find that Sarmadi’s

algorithm can work in this case and the performance is better

than our methods. The gain is approximately 3dB. For the case

of one block (J = 1), (16) can still not work. For the case of

ten blocks (J = 10), the performance of the modified method

(25) is better than that of (16). The gain is about 3dB as well.

Therefore, the modified method not only needs fewer blocks

but also has a better performance when the block number is

the same (J = 10).

VI. CONCLUSIONS

In this paper, we propose two novel blind channel estimation

methods. The first method can work for all OSTBC-OFDM

systems with 3 or more transmit antennas and no matter

how many receive antennas there are. The second method

can estimate channel with fewer received blocks. Simulation

results verify the performances of the proposed methods.
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