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ABSTRACT

A novel complex flat fading channel estimation scheme is proposed.

Contrarily to previous schemes in the literature, this new approach is

not based on introducing pilot sequences, but on reducing the inter-

ference caused by the information-bearing signal on the estimation-

aiding signal by using Dirty Paper Coding. We show through sim-

ulations that our method outperforms the Partially-Data Dependent

scheme, which is a state-of-the-art technique based on superimposed

pilots.

Index Terms— Channel estimation, dirty paper coding, super-

imposed pilots.

1. INTRODUCTION

Channel estimation is a transversal problem in signal processing; it is

used in a number of applications, including digital communications

(e.g., estimation of the channel parameters, automatic gain control,

signal-to-noise ratio estimation, etc.), multimedia forensics (e.g., es-

timation of the linear filter used for post-processing an image), and

acoustics (e.g., estimation of the acoustic response of a room).

There are mainly two approaches to the channel estimation prob-

lem: blind estimation and pilot-based estimation. In the former, cer-

tain underlying properties of the transmitted signal are exploited to

estimate the channel. Those characteristics can be statistical, such

as Higher Order Statistics (c.f., [1]), or deterministic, as in Constant

Modulus Algorithms (c.f., [2]). On the other hand, pilot-based sys-

tems use part of the total power budget to transmit a signal, referred

to as pilot or training signal, that is known to the receiver, so it can

be used to infer the channel response. In most cases, the pilot signal

is transmitted in an orthogonal subspace to that of the information-

bearing signal, most often through either time-domain of frequency-

domain multiplexing.

Pilot-based approaches have a number of well-known draw-

backs [3, 4, 5]: 1) In fast-varying channels, the training signals

must be frequently sent in order to update the channel state infor-

mation, thus wasting a significant amount of resources (in terms of

bandwidth increase or loss in information rate), 2) The information-

bearing signal has to be shut down, requiring the implementation of

additional logic to synchronize the pilot sequence slots (in whatever

domain they are allocated) at both the transmitter and the receiver, 3)

The estimate is based on particular locations of the pilot sequences

(typically locations at time and/or frequency); therefore, interpola-

tion is frequently required in order to have channel estimates at other
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times/frequencies. On the other hand, blind estimation approaches

suffer from slow convergence (i.e., a high number of samples of the

received signal are required), and possible misconvergence [6].

More recently, the so-called superimposed training has been

proposed as an alternative to the above approaches. In superimposed

training a known pilot sequence (due to the parallelism with data hid-

ing, we will name it watermark) is added to the information-bearing

signal (which, similarly, we will call host). Since both signals are

simply added, explicit allocation of time/frequency slots for training

purposes is not required, in contrast to traditional training methods

[7]. However, assuming that the transmitter has some fixed power

budget, the information-bearing signal will suffer some power loss,

and will be additionally distorted by the superimposed signal.

Unfortunately, as the host and pilot sequences are not orthog-

onal, the former will interfere on the pilot signal. This is a well-

known problem in watermarking, where it is referred to as host in-

terference, and it occurs in those schemes whenever a watermark

independent of the host is added to the latter (as in Additive Spread

Spectrum schemes [8]). In both fields solutions have been proposed

that devote some of the available power to partially cancel the host-

interference in the direction of the added sequence. These schemes

were independently developed by Malvar and Florencio in 2003 [9]

in the watermarking field, and by He and Tugnait in 2008 [4] for

channel estimation, and they were named Improved Spread Spectrum

(ISS) and Partially-Data-Dependent (PDD) superimposed training,

respectively. Interestingly, to the best of the authors’ knowledge this

connection between PDD and ISS has not been reported to date.

Both ISS and PDD only partially cancel the host interference,

thus leaving room for improvements. In fact, full host-interference

rejection has been achieved in data hiding by exploiting the Dirty

Paper Coding (DPC) paradigm, initially proposed by Costa in [10].

Adapting Costa’s code construction, Chen and Wornell [11] pro-

posed the use of Distortion Compensated-Quantization Index Mod-

ulation (DC-QIM) which, thanks to its host-rejection feature, leads

to substantial performance improvements with respect to ISS.

In this work we pursue this connection between channel esti-

mation and data hiding further to propose a flat fading estimation

technique that is based on DPC principles and significantly benefits

from a larger host cancellation than in PDD. We remark that this is

the first time DPC codes are used for channel estimation purposes.

For the sake of simplicity, we will focus our analysis on the complex

flat fading channel (which is highly relevant in communications),

leaving for future work the extension to more involved cases.

The remaining of this paper is organized as follows: Sect. 2 in-

troduces the problem formulation, while Sect. 3 describes the pro-

posed scheme. Then, Sect. 4 presents the experimental results, and

conclusions are summarized in Sect. 5
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1.1. Notation

Random variables are denoted with capital letters (e.g., X) and their

outcomes with lowercase letters (e.g., x). Similarly, L-dimensional

random vectors and their outcomes are denoted by bold letters (e.g.,

X and x, respectively), and their jth component are indicated by a

subindex (e.g., Xj and xj). The magnitude of complex number x
will be denoted by |x|, and its phase by ∡x; furthermore, sometimes

some notation abuse will be considered by denoting the component-

wise magnitude of complex vector x as |x|. The probability density

function (pdf) of a random variable is denoted by f·(·) and its stan-

dard deviation by σ·; in both cases the letter denoting the random

variable is in the subindex (e.g., fX(x), σX). Furthermore, E{·} de-

notes the statistical mean. The L×L identity matrix will be denoted

by IL×L, and A∗ is the Hermitian transpose of matrix A.

2. PROBLEM FORMULATION

Taking into account the drawbacks of both training sequences and

superimposed pilots exposed in the Introduction, in this work we

propose a novel procedure for flat fading channel estimation. We re-

quire our method to have the following properties: 1) the channel es-

timation should not be based on allocating some channel slots (e.g.,

in time or frequency) for pilot signals. In this way the transmission of

the information can be transmitted with no interruption (e.g., in time

or frequency), 2) the original signal must keep its value according

to some objective measure, meaning that the estimation procedure

can only slightly modify the transmitted signal. Mean Square Error

(MSE) will be used for quantifying this distortion, 3) few samples

should be required in order to provide a channel accurate estimate.

Hereafter, we will denote by x the information signal, which

will be modeled by a continuous random variable. The transmitted

signal will be denoted by y, and w , y − x will denote the es-

timation aiding signal. Then, the transmitted signal goes through a

complex flat fading channel with complex gain t0, which also intro-

duces circularly-symmetric complex Additive White Gaussian Noise

(AWGN), yielding the received signal z = t0y + n.

DC-QIM computes the transmitted signal as

y = Qv(x) + (1− α)[x−Qv(x)], (1)

where Qv(·) is a quantizer indexed by the hidden message v, and

α ∈ (0, 1] is the so-called distortion compensation parameter. The

second term in the right side of (1) is called self-noise, which makes

the transmitted signal lie off a quantization centroid; in other words,

the larger α, the closer y will be to a centroid of the quantizer, but

the larger the distortion on the information signal introduced by the

watermark. The most common implementation of DC-QIM is that

where Qv(x) = Q∆(x − d − dv) + d + dv , where Q∆(·) is

the minimum-distance componentwise scalar quantizer with step-

size ∆, D ∼ U([−∆/2,∆/2]L) is the so-called dither, which takes

values depending on a secret key K, and dv is a quantizer offset that

depends on the hidden message.

Since DC-QIM is able to completely avoid the host-interference

problem in the watermarking scenario, in this work we propose to

use (1), setting a fixed value of v, for generating also the transmitted

signal. Intuitively, in the same way that the quantization of the in-

formation signal improves the watermark decoding in watermarking

(in terms, for example, of achievable rate) due to the reduction of the

host interference, it makes sense to use it in the channel estimation

problem. As we will see, the achieved results confirm this intuition.

Finally, let us mention that some works in the watermarking lit-

erature [12, 13] have studied the watermark decoding of DC-QIM

when the received signal is a noisy scaled version of the transmitted

one, i.e., z = t0y + n, where t0 is the scaling factor. However,

contrarily to the problem considered in this paper, the target of those

works was not to provide an estimator of t0, but only to decode v.

3. DESCRIPTION OF THE ALGORITHM

In this paper, we exploit the nature of the complex product (multi-

plicative on the magnitude, additive on the phase) by considering a

codebook defined in polar coordinates. By doing so, the estimation

of t0 will be decoupled into two simpler real estimation problems:

first, an estimator |t̂0(z)| of the magnitude is obtained, and this is

then used to estimate the phase ∡t̂0(z). This decoupling will intro-

duce some loss in performance, but, on the other hand, it will allow

to significantly reduce the computational cost of the estimation.

3.1. Generation of the transmitted signal

The magnitude of xi is modified as |yi| = |xi| + α (Qρ (|xi|−
̺i)− (|xi| − ̺i)), where i = 1, . . . , L, Qρ(·) denotes a uniform

scalar quantizer with step-size ρ, and ̺ stands for a dither sequence

which is uniformly distributed in [−ρ/2, ρ/2]L. It is worth noting

that since the real and imaginary components of X follow indepen-

dent zero-mean Gaussian distributions with variance σ2
X , then |X|

will be Rayleigh distributed, with scale parameter σX .

In order to control the distortion introduced by the estimation

aiding signal, and at the same time provide a phase detection er-

ror probability similar to that of the magnitude detection, the quan-

tization step applied to ∡xi, i = 1, . . . , L, is chosen to yield an

Euclidean distance between neighboring complex centroids sharing

the same magnitude (i.e., those centroids only distinguished by their

phase), nearly equal to ρ.1 Specifically, the quantization step used

for quantizing the phase coordinate of the ith sample is calculated as

φi =



























2π

(⌈

π

[

cos−1

(
√

(Qρ(|yi|−̺i)
2−(ρ/2)2)

Qρ(|yi|−̺i)

)]−1
⌉)−1

if Qρ (|yi| − ̺i) 6= 0,

2π, otherwise

, (2)

where the arccosine function cos−1(·) takes values in [−π, π), ⌈·⌉
stands for the ceil function, and we have used the relationships be-

tween Cartesian and polar coordinates.

Consequently, the modified phase will be obtained as ∡yi =
∡xi + α [Qφi

(∡xi − φiϕi)− (∡xi − φiϕi)], where ϕ is uni-

formly distributed in [−1/2, 1/2]L . Note that the magnitude quan-

tization step does not depend on i, but the phase quantization step

does; in fact, the larger the magnitude of the ith sample, the smaller

the used phase quantization step, which makes sense in order to

achieve the target of controlling the estimation aiding signal power.

3.2. Magnitude Estimation

Since, in general, a priori information on |t0| is not available, the

Maximum Likelihood (ML) estimator will be used. In order to ob-

tain a mathematically tractable expression of f
|Z|

∣

∣|T |,K

(

|zi|
∣

∣|t|, ̺i
)

,

the pdf of |Z| given |t| and ̺i, an approximation of that pdf is pro-

posed based on three hypotheses (whose verification depends on

1In general that distance can not be exactly ρ, as the phase quantization
step is required to be an integer divider of 2π, in order to verify the phase
periodicity constraint.
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the chosen values of of the quantization step-size ρ, and the dis-

tortion compensation parameter α): 1) the variance of |X| is much

larger than the second moment of the quantization lattice (i.e.,

ρ2/12). Therefore, the probability of the transmitted centroid given

|t0| can be approximated by ρf|X|(z/|t0|), 2) the variance of the

scaled self-noise (i.e., |t0|2(1 − α)2ρ2/12) is much smaller than

the variance of the channel noise σ2
N . Therefore, the Gaussian

channel noise dominates the total noise distribution, 3) the square

distance between scaled centroids (which we will quantify by us-

ing |t0|2ρ2/12) is much larger than the variance of the total noise

(σ2
N + |t0|2(1 − α)2ρ2/12). Therefore, the noise distribution is

negligible out of the quantization region of the transmitted centroid.

By jointly considering these assumptions, one can approximate

f
|Z|

∣

∣|T |,K

(

|z|
∣

∣|t|, ̺
)

≈ |z|ρe
−

|z|2

2σ2
X

|t|2

σ2
X |t|

e

−
((|z|−̺|t|)modρ|t|)2

2

(

σ2
N

+
(1−α)2ρ2|t|2

12

)

√

2π
(

σ2
N + (1−α)2ρ2|t|2

12

)

,

(3)

where the modulo operation is defined as A mod B , A−QB(A).
If the three hypotheses do not simultaneously hold, the validity of

this pdf approximation and the accuracy of our estimator can no

longer be guaranteed. Intuitively, the leftmost fraction of the pre-

vious expression approximates the probability of the centroid corre-

sponding to |z|, while the rightmost fraction approximates the dis-

tribution of |z| given that centroid. From (3), and given that the

components of z are mutually independent, the ML estimation can

be approximated as

|t̂0(z)| ≈ argmin
|t|≥0

(

‖z‖2
σ2
X |t|2 +

‖(|z| − ̺|t|)modρ|t|‖2
(

σ2
N + (1−α)2ρ2|t|2

12

)

+L log

(

|t|2
(

σ2
N +

(1− α)2ρ2|t|2
12

))

)

. (4)

In order to limit the search-space of (4), a search-interval

[|t−|, |t+|] will be calculated by using the variance-based estima-

tor of |t0|2, i.e., |t̂0(z)|2var =

∑L
i=1 |zi|

2

L−1
−

(

∑L
i=1 |zi|

L−1

)2

−σ2
N

σ2
|X|

+σ2
ω

,where

σ2
|X| = (4− π)σ2

X/2 and σ2
ω denotes the variance of the magnitude

of the estimation aiding signal (i.e., σ2
ω ≈ α2ρ2/12). It can be

shown that |t̂0(z)|2var is an unbiased estimator of |t0|2; consequently,

if L is large enough to apply the Central Limit Theorem (CLT), the

distribution of |t̂0(z)|2var can be approximated by a Gaussian distribu-

tion with mean |t0|2 and variance 2(|t0|2(σ2
|X|+σ2

ω)+σ2
N )2/[(L−

1)(σ2
|X| + σ2

ω)
2]. Therefore, if |t̂0(z)|2var ≈ |t0|2, then |t0|2 will

lie with approximated probability erf(K2/
√
2) in the interval de-

fined by |t|2± = max
(

ǫ, |t̂0(z)|2var ±K2

√

2η/(L− 1)
)

,where

ǫ > 0 guarantees that |t+|2 and |t−|2 take positive values, and

η ,
(|t̂0(z)|2(σ2

|X|+σ2
ω)+σ2

N )2

(σ2
|X|

+σ2
ω)2

. By applying the square root to those

values, we obtain the interval we were looking for.

Notice that due to the modulo operation, (4) is a non-convex

function, making it impossible to apply off-the-shelf optimization al-

gorithms. Here we propose to sample the search interval [|t−|, |t+|]
finely enough to guarantee that two consecutive sampled points will

be in the main lobe of the target function, which is indeed convex;

the set of sampled points will be denoted by T . The sampling cri-

terion is based on setting the total noise variance to be a multiple of

the square quantization step-size, iteratively assuming that the con-

sidered magnitude value |t(l)| = |t0|, so

|t(l + 1)| = |t(l)|
E{|X|2}+ ρ2(1−K1)

12

×
(

α
ρ2

12
+ E{|X|2}

+
ρ√
12

√

ρ2

12
((1− α)2 +K1(2α− 1)) +K1E{|X|2}

)

,

where E{|X|2} = σ2
|X| + σ2

Xπ/2, |t(1)| = |t−|, and the iterative

sampling stops when |t(l)| ≥ |t+|. The parameter K1 is introduced

to control the separation between two consecutive elements of T
and, thus, the cardinality of that set. The larger K1, the smaller |T |
(less computational cost), but the more likely it will be that T misses

the main lobe of the target function, with a consequent performance

reduction. The details of this sampling algorithm will be expanded

in a future work.

The Matlab optimization toolbox function fminbnd (which

implements a bounded optimization algorithm based on golden sec-

tion search and parabolic interpolation) is run once for each interval

defined by two consecutive elements of T ; in this way a set T ∗ (of

cardinality |T | − 1) with the corresponding optimization solutions,

is built. Finally, the approximated ML estimate is that point in T ∗

which minimizes the target function in (4).

3.3. Phase Estimation

Assuming that the |t̂0(z)| obtained following the scheme described

in the previous section is an accurate approximation of |t0|, the nor-

malized observation |zi|/(|t̂0(z)|), which is approximately equal to

|yi|, is used to estimate the phase quantizer step-size φ̂i as in (2).

Under the hypotheses introduced in the previous section, the dis-

tribution of Z given t0 and the transmitted centroid, can be approx-

imated by an i.i.d. Gaussian distribution centered at the transmitted

centroid multiplied by t0, and with variance equal to the sum of the

noise channel variance and the self-noise variance scaled by |t0|2.

Analogously to the magnitude estimation, the pdfs of neighboring

phase centroids are approximately not overlapped. Therefore, the

resulting ML estimator of ∡t0 can be approximated as

∡t̂0(z) = argmin
t∈[−π,π)

L
∑

i=1

∣

∣

∣

∣

∣

Qρ

( |zi|
|t̂0(z)|

− ̺i

)

−
( |zi|
|t̂0(z)|

− ̺i

)

ej((∡zi−φ̂iϕi−t)modφ̂i)

∣

∣

∣

∣

∣

2

,

where the modulo operation is used to measure the phase difference

between the received samples and their closest centroids. In this

work, the previous optimization is carried out by exhaustive-search.

4. EXPERIMENTAL RESULTS

In this section, we compare the MSE of the DPC-based estimator

proposed in this work, with that of PDD [4]. Figs. 1-3 show the MSE

as a function of |t0| ∈ [0.1, 2] ∩ 0.1Z, where the results for each of

those points were obtained by using 103 Monte Carlo runs; for each

run, ∡t0 was independently generated according to U(−π, π). The

DPC-based scheme uses K1 = 1, K2 = 10, ǫ = 10−3, and the

exhaustive search performed in the estimate of ∡t0 considers 2 · 104
points uniformly located through [−π, π).

Concerning the comparison with PDD, we consider the case

where such scheme also deals with time invariant flat channels, even
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Fig. 1. MSE vs. |t0| for our algorithm (DPC), PDD and MPDD.

DWR = 20, 30, 40 dB, WNR = 0 dB, α = 0.5, and L = 103.

if it can be used in more general frameworks; furthermore, the host-

interference controlling parameter proposed in [4] is optimized in

order to provide the best performance for that scheme. Note that

the power of the distortion introduced on the host signal by PDD

comprises both the power of the estimation aiding signal, and the

power due to the reduction of the host interference. The channel es-

timator proposed in [4], once it is adapted to the complex flat fading

case, is t̂0(z) = w∗z/‖w‖2, i.e., it only uses the component of z

in the direction of w; consequently, the remaining L − 1 compo-

nents of z are dismissed. Since those L − 1 components follow a

N (0, |t0|2σ2
X + σ2

N) distribution, they are indeed informative about

|t0|, and that dependence could be exploited. Therefore, we propose

a suboptimal modification of PDD (denoted by MPDD), where the

L− 1 components of z orthogonal to w are fed to a variance-based

estimator, and the estimate of ∡t0 is ∡w∗z.

For the sake of comparison, we will find it useful to define two

power ratios borrowed from watermarking: the Document to Water-

mark Ratio (DWR), which is the ratio between the power of x and

the power of w, and the Watermark to Noise Ratio (WNR), which is

the ratio between the power of w and the power of n.

Fig. 1 compares the MSE of the proposed scheme with that of

PDD and MPDD as a function of |t0|, for different values of DWR.

One can observe that the larger the DWR (i.e., the larger the mar-

gin by which Hypothesis 1 in Sect. 3.2 is satisfied), the better the

performance of the proposed scheme. Furthermore, in the proposed

scheme a larger DWR helps to estimate t0 (at the cost of increasing

the estimation computational cost), contrarily to what happens with

PDD and MPDD; indeed, in order for the DPC-based scheme to pro-

vide better results than PDD and MPDD, |t0| must take values larger

than a DWR-dependent threshold; the larger the DWR, the smaller

the |t0| value for the crossing point. Is is worth mentioning that our

method generally requires more computational resources than PDD

or MPDD. Related to the comparison between PDD and MPDD, the

larger the DWR, the better MPDD is with respect to PDD; in that

case PDD will not be able to cancel out the host interference on w,

and, as it was mentioned before, the estimator proposed in [4] does

not take advantage either of the L − 1 components of z orthogonal

to w (as our proposed modification MPDD does).

Fig. 2 illustrates the contribution of |t0| and ∡t0 to the MSE of

the estimate of t0 for different values of WNR; again, the results for

PDD are also plotted. Similarly to the discussion about Fig. 1, in this

case we can check the effect of the margin by which Hypothesis 3 in

Sect. 3.2 is satisfied on the performance of the estimator. Mainly, the

larger the WNR, the better the provided approximation; of course,
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Fig. 2. MSE vs. |t0| for our algorithm (DPC), and PDD. WNR

= −3, 0, 3 dB, DWR = 30 dB, α = 1, and L = 103. MSEs of |t0|
and ∡t0 are also provided.

one must also take into account that a larger WNR will make easier

the estimate, independently of the accuracy in the approximation of

the pdf. Additionally, it must be noted that the DPC MSE curves

share a similar behavior with respect to |t0|: for small values of

|t0|, the value of the MSE increases with it; then, when the three

hypotheses hold, it decreases with |t0|. Furthermore, we can see

that the main source of MSE seems to be the phase estimate; this is

partially due to the fact that this estimator inherits the errors made

by the magnitude estimator.

Finally, Fig. 3 illustrates the behavior of the MSE as a function

of the distortion compensation parameter α. According to these re-

sults, the performance of our scheme shows a trade-off between the

value of |t0| at the crossing point with PDD, and the value of MSE

when |t0| is increased. For example, for α = 0.5 our technique

outperforms PDD for |t0| ≥ 0.7, and MSE ≈ −55 dB for large val-

ues of |t0|; on the other hand, for α = 0.75 the crossing point is at

|t0| ≈ 0.9, but MSE ≈ −59 dB for large values of |t0|.
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Fig. 3. MSE vs. |t0| for our algorithm (DPC), and PDD. α =
0.25, 0.5, 0.75, 1, DWR = 30 dB, WNR = 0 dB, and L = 103.

5. CONCLUSIONS

In this paper, a novel flat fading channel estimator based on DPC

and ML has been presented. According to the experimental results,

the DPC-based estimation performance, measured by the MSE, im-

proves with DWR and WNR. Additionally, the impact of the distor-

tion compensation parameter α on the performance of our scheme

is also analyzed. The shown results also indicate that our proposal

outperforms the PDD techniques when the design hypotheses hold.
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