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Abstract—In this paper the up-link channel estimation prob-
lem in a multi-cell network with a Single-Input-Multiple-
Output (SIMO) fading correlated channel and finite-length, non-
orthogonal and contaminated pilots is considered. Our con-
tribution is a novel channel estimation technique, referred to
as the Sparse Channel Estimator (SCE), which exploits the
Karhunen-Loéve Transform (KLT) sparse-representation of the
channel. We show that, by simply utilizing an interference-
contaminated channel sample-covariance matrix, the proposed
approach outperforms Least Squares (LS)-based and Minimum
Mean Squared Error (MMSE) techniques relying on the same
type of assumptions.

I. INTRODUCTION

Multi-cell cooperation, also referred to as Coordinated

Multi-Point (CoMP) system, is one of the key features in

Long Term Evolution (LTE)-advanced technology and its

future enhancements [1]. CoMP provides an efficient way to

increase the network throughput by coordinating data trans-

missions from multiple base-stations while managing inter-

cell interference [2]. Theoretical research has provided some

relevant, although optimistic, indications about the potential

of this scheme [3], especially when applied together with

cooperative beam-forming. In this paper we focus on the

problem of pilot-based uplink channel estimation with the

assumptions of finite-length non-orthogonal pilot sequences,

limited spectrum, and crucially, in the presence of inter-cell

interference [4], [5]. Specifically, we consider the scenario in

which the simultaneous transmission of non-orthogonal pilots

sequences from mobile nodes in different cells occurs and

causes the well-known pilot contamination problem.

Differently than classical Least Squares (LS)-based and

Bayesian methods, e.g. Minimum Mean Squared Error

(MMSE), that respectively rely on orthogonal pilots and

the knowledge of the exact channel covariance matrix per

user and interferers, we propose a sparsity-inducing algo-

rithm, hereafter referred to as Sparse Channel Estimator

(SCE). Unlike the algorithms [6] in [7] and that describe

two different solutions to the estimation of an Orthogo-

nal Frequency-Division Multiplexing (OFDM) Multiple-Input-

Multiple-Output (MIMO) channel mainly exploiting the as-

sumption of a sparse Channel Impulse Response (CIR), the

proposed method tackles the problem of channel estimation

with interferred pilots. Specifically we exploit the Karhunen-

Loéve Transform (KLT) to obtain a sparse representation

of the channel and use the eigenspace of different channel

covariance matrixes to circumvent the non-orthogonality of

the pilot sequences. Indeed, we show that with a contaminated

covariance matrix, namely the sample covariance, the proposed

SCE method outperforms the LS-based and MMSE utilizing

the same type of information.

The reminder of this paper is organized as follows. Section

II describes the signal and channel models. Section III reviews

the stat-of-the-art methods and presents our contributions.

Section IV shows comparisons to Least Squares (LS)-based

and MMSE estimators.

II. SYSTEM AND CHANNEL MODEL

Consider a cellular network with NBS cells severed by

one base-station and Nu users per cell. All base-stations

are equipped with an array of M antennas, whereas users’

terminals have a single omnidirectional antenna.

Let hi,p,j ∈ C
M denote the SIMO channel between the i-th

base-station and the p-th user of the j-th base-station. Using

the fading correlation model proposed in [8], the channel

vector hi,p,j can be obtained as

hi,p,j = γi,p,jR
1/2
i,p,jz, (1)

where γi,p,j is the pathloss, A1/2 indicates the squared-root of

a positive semi-definite (psd) matrix A, z ∈ C
M is a vector

of independent identically distributed (iid) random variables

obtained from the zero-mean multivariate complex Gaussian

distribution, i.e. z ∼ CN (0, IM ) with IM ∈ R
M×M denoting

the identity matrix and, the matrix Ri,p,j ∈ C
M×M is the

channel correlation matrix with the nm-the element given by

[Ri,p,j ]mk =
1

L

L∑

ℓ=1

exp
(

−j2π 1
λ
(ψ̄

i,p,j
ℓ )T(rk − rm)

)

, (2)

where T is transpose, λ is the wavelength of the carrier fre-

quency, L is the total number of arriving multipaths, rm ∈ R
3

is the vector coordinate for the m-th antenna and ψ̄
i,p,j
ℓ !

[cos θi,p,jℓ cosφi,p,j
ℓ , sin θi,p,jℓ cosφi,p,j

ℓ , sinφi,p,j
ℓ ]T with θ

i,p,j
ℓ

and ϕ
i,p,j
ℓ indicating the azimuth and elevation angle of arrival

of the ℓ-th path, respectively.
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We focus on the up-link channel estimation problem and

consider a scenario in which all users simultaneously transmit

a pilot-sequence to their serving base-station under the as-

sumption of full-spectrum reuse. Without loss of generality,

consider the signal at the base-station of the cell-1 and

assume that h1,1,1 is the channel of interests. For notational

convenience, let us also omit the index i from the triplet

“i, p, j”. Therefore, the received signal at the base-station of

the cell-1, denoted by Y ∈ C
M×Nz , is given by

Y = h1,1sT
1,1

︸ ︷︷ ︸
user

signal

+

Nu∑

p=2

hp,1sT
p,1

︸ ︷︷ ︸
intra-cell

interference

+

NBS∑

j=2

Nu∑

p=1

hp,jsT
p,j

︸ ︷︷ ︸
inter-cell

interference

+N, (3)

sp,j ∈ C
Nz is the pilot-sequence of length Nz used by the p-th

terminal of the j-th base-station whose energy is ‖sp,j‖
2
2 = Nz

and N ∈ C
M×Nz is the spatially and temporally white additive

zero-mean Gaussian noise with variance σ2.

Equation (3) shows that the terminal-signal is affected by the

interference due to intra base station cell and inter base-station

cells pilot transmissions. If pilot sequences are not orthogonal,

the estimation of h1,1 is affected by the interference and the

intensity is proportional to the correlation amongst pilots. In

the literature, this error is referred to as pilot contamination.

III. CHANNEL ESTIMATION ALGORITHMS

In this section, a briefly review of classical channel estima-

tion techniques as well as our contribution are provided. For

the sake of clarity, only one user per cell is considered, thus

also the index “p” is removed from all pairs “p, j”.

A. Classical Estimation Approaches

Conventional channel estimation techniques can be formu-

lated, for instance, as a LS or a Bayesian estimation problem.

Assuming that only s1 is known at the base-station, a classic

estimator is the LS given by

ĥ1
LS = Y(sT

1)
†, (4)

where † is the Moore-Pernouse pseudo-inverse.

If all transmitted pilot-sequences are known at the base-

station of cell-1, the Global Least Squares (G-LS) estimator

of the total channel matrix H ! [h1, · · · ,hNBS ] ∈ C
M×NBS is

obtained as

ĤG-LS = Y
(
ST

)†
, (5)

where S ∈ C
Nz×NBS and S ! [s1, · · · , sNBS

].
Finally, if in addition to the transmitted pilot sequences, the

second order channel statics are also known, then it is possible

to use the following Maximum A Posteriori (MAP) probability

estimator [9]

ĥMAP = (R̄S̄HS̄+ σ2IMNBS
)−1R̄S̄Hy, (6)

where ⊗ is the Kronecker product, y ∈ C
NBSNz with y !

vec(Y), vec(·) is a matrix-to-vector function, S̄ ∈ C
Nz×NBSM

with S̄ ! S⊗ IM and R̄ ∈ R
NBSM×NBSM is a block-diagonal

matrix with blocks {R1, · · · ,RNBS
}.

Under the assumptions of iid Gaussian channel coefficients,

equation (6) is equivalent to the MMSE estimator (also linear-

MMSE without Gaussian assumptions) [9]

ĥMMSE = R̄S̄H(S̄R̄S̄H + σ2INzM )−1y. (7)

It is well-known that the performance for the aforemen-

tioned techniques depend on the scenario and channel model

assumptions. For instance, the LS estimator (4) suffers from

lack of orthogonality between desired and interfering pilots.

The G-LS, which is equivalent to a Maximum Likelihood

(ML) estimator, exploits only the Gaussian assumption on the

noise. Finally, Bayesian estimators are sensitive to the errors

affecting the estimates of the covariance matrices and, in some

cases, impractical since the acquisition of the second order

statistics can be inefficient [9, Sec. VI].

B. Sparsity-Aware Regularized Least Squares

In the sequel, we provide our main contribution, namely the

SCE algorithm. Differently from the aforementioned methods,

our approach relies on a sparse representation of the channel

vector h ! vec(H) obtained via the KLT. Specifically, we
consider the transformation

c = ŪHh, (8)

where Ū ∈ R
NBSM×NBSM is a block-diagonal matrix with

blocks {U1, · · · ,UNBS}, where Ui is obtained from the

eigen-decomposition of Ri, i.e. Ri = Ui
Σi(U

i)H with

Σi ∈ R
M×M denoting the eigenvalue matrix of Ri.

Notice that the above channel reprentation can also be

derived from (1) as follows

c = ŪHh = Σ
1/2
i z, (9)

from which it is evident that the sparsity of c relates to the

non-zero eigenvalues of the channel covariance matrix.

Utilizing recent results in sparse-signal estimation theory

[10], the vector c can be estimated from y as

ĉCSE = arg min
c∈CMNBS

µ‖ωTc‖1 +
1

2
‖y − S̄Ūc‖F, (10)

where ω ∈ R
MNBS

+ is a weighing vector with higher values

to those coefficients that must be set to zero1, µ ∝ σ2, e.g.,

µ = 1
2σ

2 [11], [12] and ‖ · ‖F is the Frobenius norm.

Before proceeding with the performance comparison, a few

considerations are in order. Firstly, notice that this optimization

problem is well-known in the literature as Least Absolute

Shrinkage and Selection Operator (LASSO), where the ‖ · ‖1
acts as a regularization term and sparsity inducing operator.

Therefore, the proposed algorithm becomes more and more

effective when the vector c is sparse, e.g. when M is large

[13] or the angular spread of the arrival paths is small [9].

Secondly, notice that the optimization is formulated only

with the eigenvectors of Ri. On the one hand, this is drawback

with respect to a Bayesian approach since the information

1If the channel covariance matrix Ri is known, then the coefficients
weighing the corresponding eivenvectors are inversely proportional to the its
eigenvalues.
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on the eigenvalues, thus the relevance of each eigenvector, is

neglected. On the other hand, this is an advantage, because the

optimization seeks the optimal weights for the eigenvectors.

This becomes important when an imperfect estimate of Ri,

denoted by R̂i, is available and, the Bayesian estimators fail.

Specifically, let R̂i be the sample covariance2 given by

R̂i =
1
K

K∑

k=1

(ĥi
LS,k)(ĥ

i
LS,k)

H, (11)

where the index k refers to the k-th out K pilot transmissions.

Rewrite R̂i as R̂i = Ri +∆i, with ∆i given by

∆i =
1

K

K∑

k=1






NBS∑

j !=i

j=1

NBS∑

t !=i

t=1

αjiα
∗

tih
j
k(h

t
k)

H + 2

NBS∑

j !=i

j=1

α∗

jih
i
k(h

j
k)

H

+2

NBS∑

j=1

α∗

jih
i
k(s

†
i )N

H
k +Nk(s

T
i )

†(s†i )N
H
k



 , (12)

where αji = sT
j (s

T
i )

H and a∗ indicates conjugate.

It is easy to see that with K → ∞, ∆i is not vanishing

due to the presence of noise as well as the non-orthogonality

amongst pilot sequences. Therefore, the eigenvector and eigen-

value matrices of R̂i, respectively denoted by Ûi and Σ̂i, will

be also affected by an error and, when we compute the KLT

with ˆ̄U ∈ R
NBSM×NBSM replacing Ū, a new transformation

of h is obtained, i.e.,

ĉ = ( ˆ̄U)Hh = ( ˆ̄U)HŪc. (13)

Indeed ĉ is different from c since ( ˆ̄U)HŪ )= I due to the

imperfect estimate of Ri. However, ĉ can preserve a sparse

representation as long as the eigenvector estimates and the true

ones are sufficiently aligned. In order to verify the sparsity of

ĉ, we compute the average compression-rate of the vector ,

which refers to the exponent of the compressible signal model

pc(n) = An−ν [10], and show that is not close to 0, i.e. no

compression. Specifically, given a fixed set of pilot sequences,

and distribution of the angular spread, we estimate the average

compression-rate of c and ĉ, respectively denoted by ν and

ν̂, as a function of K. The result shown in Figure 1 validates

our claim since ν̂ > 0 and increases with K. Nevertheless, the

vector ĉ does not converges to ν due to the interference.

IV. SIMULATION RESULTS

The simulation scenario consists of a classical multi-cell

network with NBS = 7 hexagonal-cell-shape and, for sim-

plicity, Nu = 1 user per cell. Without loss of generality, the

base-station of cell-1 is performing channel estimation.

We assume an Uniform Rectangular Array (URA) with 8×3
antenna elements placed on the plane (x, 0, z). Let ai !

[ai,1, ai,2, ai,3]
T and zi ! [zi,1, zi,2, zi,3]

T be the antenna’s

coordinate vectors for the i-th base-station and the mobile

served by the i-th base-station, respectively. Each channel

2Alternative methods for sample covariance estimators can be applied, e.g.,
form MMSE. The better the estimate is, the faster is the convergence to the
ideal case of exact knowledge of Ri.

0 5 10 15 20 25 30 35 40 45 50

1.4

1.5

1.6

1.7

1.8

1.9

 

 

Compression-rate of the channel vector
- URA 8× 3, δθ = 10◦, δφ = 5◦, Nz = 11, ZC-code, Ni = 6, SINR = 0dB -

Number of learning signals, K[unit]

C
om

p
re
ss
io
n
ra
te
,
[ν
]

Covariance
Sample Covariance

Figure 1. Effects of the sample covariance error on the average compression-
rate of h.

realization is generated by equation (1), where the set of angles

θiℓ and φi
ℓ are random variables with uniform distributions3

pθi = U(θ̄i,±δθi) and pφi
= U(φ̄i,±δφi

), where θ̄i and φ̄i

be the direct azimuth and elevation angle measured between a1
and zi. The sample channel covariance is obtained by equation

(11) using K consecutive pilot transmissions.

The pilot sequence si ∈ C
Nz is a Zadoff-Chu (ZC)-

sequence with the i-th symbol given by [14]

si = exp
(

−jπun(n+2q)
Nz

)

, (14)

where Nz is an even number, q ∈ Z, n = (i − 1), 0 < u <

Nz is the ZC-sequence root such that gdc(Nz, u) = 1 where

gdc(x, y) is the great-common-divisor between x and y. Other

simulation parameters are provided in the Table I.

To evaluate the performance of the channel estimation

schemes two metrics are used. The first one is the relative

Mean Square Error (MSE) in dB-scale, defined by

rMSE(h1) = 10log10

(

E{‖h1 − ĥ1‖
2
F}

E{‖h1‖2F}

)

, (15)

where E{·} denotes the expectation.

The second metric is the Bit Error Rate (BER) measured in

the up-link and for an uncoded data with QAM modulation.

Table I
OTHER SIMULATION PARAMETERS

Network Parameter Value

Cell radius, Rc 1 km
Number of user per cell, Nu 1

Base-station antenna elevation, za 100 m
User antenna elevation, zm [1-20] m

Pilot length, Nz , 11
Antenna x-spacing, ∆x λ/2
Antenna z-spacing, ∆z λ/2

3Utilizing this simulation strategy, the absolute location of the users with
respect to the base station is not relevant.
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We assume a Zero-Forcing (ZF) equalizer to remove the

interference from the data transmitted by the user in cell-1,

i.e., b̂T
1 = wY, where w is the first row-vector of Ĥ†, Y =

B + N, with B ! [b1, · · · ,bNBS
]T and bi is the vector of

QAM symbols transmitted by the i-th user.

We compare the proposed SCE algorithm with uniform

weights to the LS, G-LS and the MMSE using the sample co-

variance and illustrate the performance of an ideal MMSE and

SCE using the information on the eigenvectors and eigenvalues

of Ri. These algorithms are labelled with ∗, e.g. MMSE∗.

Figure 2(a) shows the relative-MSE as a function of the

number of pilot sequences K utilized in the learning phase

of the covariance matrix. We assume a fixed Signal-to-

Interference-Noise Ratio (SINR) = 0dB and angular spreads

δθ = π
18 and δφ = π

36 . The result shows that while the

performance of the LS, the G-LS and the MMSE∗ are invariant

with K, the estimation error obtained with the MMSE and

SCE decrease with the increase of pilot transmissions used in

the learning phase of the covariance matrix. Interestingly, for

very large K, the difference between the MMSE and SCE is

small. Moreover, the ideal SCE∗, that uses the exact covariance

matrix, reaches the optimal performance of the MMSE∗.

Figure 2(b) shows the relative-MSE as a function of the

SINR, with K = 5 and angular spread as above. Also in this

study the results demonstrate that the proposed SCE outper-

forms the alternative techniques using the same assumptions.

Approximately a gap of ≈ 10 dB is separating the SCE from

the MMSE∗ due to the error in the covariance matrix. This

gap reduces with the increase of K.

Figure 2(c) shows the comparison of the BER achieved

in the uplink for increasing values of the SINR. The result

clearly indicates a large leap from the performance of the

MMSE to those of the SCE proving that approach is more

robust to the imperfect estimation of the covariance matrix.

The G-LS, however, shows relative good performance but

inferior to those of the SCE due to a lack of structure in

the problem formulation solved by the G-LS. Specifically, the

G-LS provides the optimal solution in the the LS-sense when

h does not have a sparse representation. Finally, notice that

the SCE∗ performs as good as the MMSE∗.

V. CONCLUSIONS

In this paper we addressed the problem of pilot-based uplink

SIMO channel estimation with the assumption of inter-cell

interference, i.e. pilot contamination. By exploiting the spatial

channel correlation, we proposed an sparsity-aware channel

estimation algorithm, referred to as SCE. This transformation

is effective also in the presence of imperfect estimation of the

channel covariance matrix. Simulation results demonstrated

the advantages with respect to classical algorithms, namely,

the LS, the G-LS and the MMSE. Future work focuses on the

effects of doppler and multipaths based on the model in [6].
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