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ABSTRACT

A system comprising a utility company serving a set of electricity
end-users is considered. The utility company can purchase energy
from the wholesale market. It is also connected to a renewable en-
ergy production facility, from which it can harvest energy at no cost,
and also to a battery for energy storage. Ahead of a scheduling
horizon, the utility purchases energy based on forecasted demand
and renewable energy production. During online operation, if the
renewable energy is not adequate, real-time decisions with respect
to user load shedding, energy procurement, and battery charging or
discharging need to be made. The problem is cast in a stochastic
approximation framework, and is solved online via a dual stochastic
subgradient method with low per-slot complexity.

Index Terms— Dual stochastic subgradients, load shedding,
smart grid, stochastic approximation.

1. INTRODUCTION

Environmental concerns and requirements on reduced dependency
on non-replenishable resources such as oil and coal are driving the
high integration of renewable energy into modern power systems
across the world. The main challenge with such integration is the
stochastic nature of renewable energy, which makes it largely unpre-
dictable in time scales greater than a few hours.

This paper aspires to tackle this challenge for a system compris-
ing a utility company serving a set of residential users. The utility
company relies on energy procurement from the wholesale market
to serve its users, but also has a renewable energy production facility
that incurs zero cost to the utility, as well as a battery to store energy.
The research issue addressed pertains to the situation where the pro-
duced renewable energy is not enough to cover the total load, and
decisions have to be made with respect to real-time energy procure-
ment at unpredictable real-time prices versus shedding users’ load,
which both incur costs to the utility company. The problem is for-
mulated in a stochastic approximation framework. Relying on com-
putationally efficient dual stochastic subgradient iterations, a novel
online algorithm for load shedding, energy procurement, and battery
charging or discharging is developed. The decisions are made in a
fashion adaptive to the renewable energy production at every slot.

1.1. Prior art and paper contributions

Load shedding has been considered in [1, Ch. 11] and [2] in a static
manner that does not adapt to the renewable energy uncertainty.
More recent works place the interplay between renewable energy
production, storage, and user demand in a stochastic setting [3–

8]. Incorporating battery dynamics naturally leads to finite-horizon
stochastic dynamic programming (DP) approaches. To render the
problem tractable in such setups, unrealistic probabilistic modeling
assumptions for the renewable energy are adopted [3, 4]. For in-
stance, renewable energy production is modeled as Gaussian, which
is not quite realistic; see e.g., [9, Ch. 3], [10], and [11] for more perti-
nent models. In general, intricate approximations may be employed
to solve related stochastic DP problems as in [5], which have high
complexity and do not lend themselves to easily implementable on-
line algorithms. The algorithm developed here in contrast bypasses
the DP limitations, has minimal per step complexity, and is not tied
to specific probabilistic models for the uncertainty.

Infinite-horizon stochastic DP is employed in [6] to coordi-
nate renewable energy production and demand, where users have
power requests whose time durations are i.i.d. and exponentially
distributed. In the present framework, no explicit modeling of the
users’ power demands is needed. Lyapunov-based stochastic net-
work optimization techniques are used in [7] and [8]. In the former,
the focus is on users whose power consumption can be deferred for
later if the utility company cannot cover the demand, while user
consumption is curtailed instead in the present work. An algorithm
for user consumption adjustments is also pursued in [8], where de-
terministic bounds need to be known for all uncertainties in advance
in order to run the algorithm, while these bounds pose explicit con-
straints on the storage size. No such requirements are present in the
stochastic approximation framework of this paper.

The remainder of the paper is organized as follows. Section 2
presents the problem formulation, while Section 3 gives character-
izations of the optimal solution. The online solver is developed in
Section 4, followed by numerical tests in Section 5.

2. PROBLEM FORMULATION

Consider a set of electricity end-users, denoted as {1, . . . ,K}, all
served by the same utility company (also called load-serving en-
tity, LSE). The LSE has three sources of energy. Specifically, it is
connected to a renewable energy production facility, from which it
can draw power to provide to the end-users. This renewable energy
source does not incur any cost to the LSE. The LSE may also buy
energy from a wholesale supplier (or the market). The third source
is a battery used by the LSE to store the excess of energy.

The LSE makes a forecast of both the user electricity demand
and the renewable energy production ahead of a system operation
horizon. Suppose the horizon comprises a set of slots denoted as
{1, . . . , T}. For instance, the horizon may be a day, consisting of
T = 144 10-minute intervals. The LSE procures from the whole-
sale supplier energy equal to the forecasted demand offset by the
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forecasted renewable energy production ahead of the horizon.
Now turning attention to the system operation within the hori-

zon, if the actual renewable energy production is less than its fore-
casted value, the LSE has three options, namely, 1) to shed user load,
2) to buy energy in real time from the wholesale supplier, and 3) to
use energy stored in the battery. Specifically, let πt and wt respec-
tively denote the actual demand minus the procured energy at slot t
and the produced renewable energy at slot t. The LSE can purchase
energy in real time with price at in slot t. The real-time prices are
not known in advance, and therefore, they are modeled as random.

The decision variables for LSE are denoted as stk, bt, and etout,
which respectively stand for the amount of load shedded for user k
at slot t, the amount of energy bought at slot t, and the amount of
energy drawn from the battery at slot t. These must satisfy per slot t

πt − wt ≤
K∑
k=1

stk + bt + ηdise
t
out (1)

where 0 < ηdis < 1 is the battery discharging efficiency, indicating
the fraction of the extracted energy that can actually be provided to
the load connected to the battery. The LSE can purchase up to bmax

amount of energy per slot, which is dictated by the transfer capability
of the LSE’s connection with the main grid, that is, it must hold that
bt ≤ bmax for all t. In addition, there is a maximum limit on the
amount of load shedding per user, expressed as stk ≤ smax

k .
The aim is to determine stk, bt, and etout per user and slot. These

will be selected based on the actual renewable energy production
wt and the real time price at, which are modeled as random. Note
that the actual demand may also differ from the forecasted one, in
which case, πt may also be modeled as random. This assumption
is not made here, because in general, load forecasting methods are
more accurate than renewable energy forecasting methods, and also
because the ensuing stochastic approximation framework can easily
handle random πt with minor modifications.

The battery dynamics are described next. Specifically, let rt be
the amount of energy stored in the battery at the end of slot t. Let
etin be the amount of energy that is stored into the battery at slot t.
The quantities rt, etin, and etout are related as follows:

rt = rt−1 + etin − etout, t = 1, . . . , T (2a)

0 ≤ rt ≤ R, t = 1, . . . , T (2b)

where r0 is given, and R is the battery capacity.
Suppose that the battery is charged only when there is excess of

renewable energy (in particular, the LSE does not procure energy in
real time to charge the battery, but only to avoid user load shedding).
The following must then hold for etin and etout for all t:

etin = ηch min{emax
in , [πt − wt]−}; 0 ≤ etout ≤ emax

out (3a)

where ηch is the charging efficiency, which is the fraction of the en-
ergy supplied to the battery that can actually be stored in the battery,
and [x]− := max{−x, 0}.

The customer will typically be compensated by the LSE for the
inconvenience caused due to load shedding. In general, this com-
pensation will depend on the load shedded during the entire hori-
zon for each user. In what follows, a cost function is set up to
guide the load shedding decisions per user and slot. Upon defining
s̄k = 1

T

∑T

t=1
stk, the shedding decisions can be made by penal-

izing s̄k, which is proportional to the total load shedded, through
a cost function Jk(s̄k). The cost function serves two purposes, as
described next.

1. User compensation: The user is compensated for the incon-
venience due to load shedding, and this compensation is pro-
portional to the total load shedded.

2. User fairness: A proper choice for the shape of Jk(s̄k) can
ensure that no user suffers from excessive load shedding rela-
tive to other users. This situation is analogous to rate fairness
in communication networks—see e.g., [12].

The cost functions Jk(s̄k) are selected to be strictly increasing and
convex (increasing marginal cost).

All the pieces are in place now in order to present the optimiza-
tion formulation. The problem can be stated with finite horizon T ,
which would necessitate the use of dynamic DP. This approach is
computationally challenging. On the other hand, the infinite-horizon
version will afford very efficient online solvers based on stochastic
approximation techniques. The formulation is presented next. The
random processes wt and at are assumed to be stationary and er-
godic. This is supported by different works in the literature, see
e.g., [9, Ch. 3], [10], [11] for the case of wind energy.

min
{st

k
},{bt},{et

out
},{s̃k}

K∑
k=1

Jk(s̃k) + lim
T→∞

1

T

T∑
t=1

atbt (4a)

subj. to lim
T→∞

1

T

T∑
t=1

stk ≤ s̃k, k = 1, . . . ,K (4b)

lim
T→∞

1

T

T∑
t=1

etout = lim
T→∞

1

T

T∑
t=1

etin (4c)

(1), (3), 0 ≤ bt ≤ bmax, t = 1, 2, . . . (4d)

0 ≤ stk ≤ smax
k , t = 1, . . . , k = 1, . . . ,K (4e)

The objective consists of two parts, namely, the penalty related
to load shedding and the energy procurement cost. The variables
are the instantaneous decisions as well as the auxiliary variables
{s̃k}. Note that (4b) will hold as equality at optimality, because
Jk is strictly increasing.

Constraint (4c) guarantees that, in the long term, the energy
stored in the battery is the same than that taken from the battery.
Clearly, (4c) represents a relaxation of the battery dynamical equa-
tion (2) that is only tight if the limits of the battery are never reached.
To better motivate the constraint, note that (2a) and rt ≥ 0 are
equivalent to the condition 0 ≤

∑t′

t=1
(etin − etout) + r0 for t′ =

1, . . . , T . Likewise, (2a) and rt ≤ R are equivalent to the condition∑t′

t=1
(etin − etout) + r0 ≤ R for t′ = 1, . . . , T . Now, substitut-

ing t′ = T into the previous equations, dividing by T , and taking
T → ∞, (4c) follows. A similar constraint has been previously
used for batteries in energy-harvesting networks [13].

The optimal solution of (4) is characterized in the next section,
while the online solver is developed in Section 4.

3. OPTIMAL SOLUTION

The objective in (4) is convex while the constraints are linear, so the
problem is convex. The solution approach is to dualize the long-term
constraints and leverage the problem separability. To be specific, let
σk denote the Lagrange multiplier associated with the kth constraint
in (4b) and ρ the multiplier associated with the long-term power con-
servation constraint in (4c). The Lagrangian is then formed by aug-
menting the objective with the dualized constraints. Provided that
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the value of λ := [σ1, ..., σK , ρ] is known, the following proposi-
tion describes the solution that minimizes the Lagrangian.
Proposition 1.a): The optimum solution for the average variables
satisfies s̃∗k(λ) = arg min{Jk(s)− σks}, ∀k.
Proposition 1.b): The optimal instantaneous allocation at time t fol-
lows a greedy strategy:
b.1) If πt −wt ≤ 0, there is an instantaneous energy surplus, which
is stored in the battery, that is, etin = ηdis min{emax

in , wt−πt}, while
et∗out(λ) = 0, bt∗(λ) = 0 and st∗k (λ) = 0 ∀k.
b.2) If πt − wt > 0, there is an instantaneous energy deficit, which
is covered by activating at least one of the three resources available,
while etin = 0. Specifically, the optimal et∗out(λ), bt∗(λ), and st∗k (λ)
are found as the solution of the following linear program (LP):

min
{0≤st

k
≤smax

k
,0≤bt≤bmax,

0≤etout≤e
max
out }

atbt + ρetout +

K∑
k=1

σks
t
k (5a)

subj. to : πt − wt = bt + ηdise
t
out +

K∑
k=1

stk. (5b)

The first observation is that, thanks to the decomposability of
the Lagrangian, average and instantaneous variables can be found
separately. Note that the variables s̃t∗k in 1.a) are found separately
for each user k too. To gain some intuition on the solution, we will
interpret σk as the price of shedding user k and ρ as the price of ex-
tracting energy from the battery. Part a) of the proposition states that
the optimal s̃∗k is found so that, in the long term, the marginal cost
of shedding user k coincides with the equilibrium price σk. In fact,
if Jk(·) is differentiable, one can readily see that the first-order opti-
mality condition yields J ′k(s̃∗k) = σk. Regarding the instantaneous
variables, part 1.b.2) of the proposition dictates that, when a deficit
of instantaneous energy exists, a greedy approach is optimal. More
specifically, while the deficit can be covered by any combination of
{et∗out, bt∗, st∗1 , ..., st∗K}, the LP in 1.b.2) implies that, if feasible, only
the resource with minimum price shall be used to cover it, while all
others must be set to zero. When the deficit is so high that it ex-
ceeds the maximum value of the resource with minimum price, the
resource with the second smallest price has to be activated to cover
the remaining deficit, and so on.

When more than one resource achieve the minimum price (e.g.,
when ρ = at and σk > ρ for all k), any feasible combination of the
resources with minimum price (etout and bt in our example) covering
the deficit minimizes the Lagrangian. However, not all such combi-
nations will necessarily be actual (feasible) solutions of the original
primal problem (4). This is a well-known issue with the dual meth-
ods for not strictly convex problems. In fact, it is not difficult to
show that, except in trivial cases, the optimal solution to our prob-
lem requires σ∗k = σ∗k′ = ρ∗ for any two users k and k′, so the
aforementioned issue will show up. Different approaches exist in
the literature to solve this problem; see e.g., [14–17]. Leveraging the
results in [15], it is possible to construct a solution of (5) that guaran-
tees feasibility in the primal domain.1 However, it is worth stressing
that the focus of the paper is on the design of stochastic schemes that
overcome this issue, as will be explained in the ensuing section.

1The specific combination is st∗k = (πt − wt)s̃∗k/Ω0, et∗out =

(πt − wt)ēout/(ηdisΩ0), and bt∗ = (πt − wt)āeq/Ω0, where ēout =
ηchηdisE[(wt−πt)1{wt−πt≥0}], āeq = E[(πt−wt)1{(πt−wt)>0}]−
E[(πt − wt)1{at<λ∗}] − ēout −

∑
k
s̃∗k and Ω0 := E[(πt −

wt)1{(πt−wt)>0}1{at≥ρ∗}}] = ēout + āeq +
∑

k
s̃∗k . One can easily

prove that this allocation is optimal and feasible.

4. ALGORITHM

4.1. Stochastic approximation

The main obstacle in implementing the solution in the previous sec-
tion is to find the optimal value for the multipliers {σ∗k, ρ∗}. Al-
though a classical offline iterative subgradient dual method can be
used to accomplish such a task, averaging over all time instants is
required at each iteration; see e.g., [16]. The latter is challenging be-
cause 1) knowledge of the joint distribution of {wt, at}, or, for finite
horizons, the entire path {wt, at}Tt=1, would be required and 2) the
algorithm will be computationally expensive. An effective alterna-
tive to bypass such problems entails stochastic approximation itera-
tions [18–20], whose goal is to obtain samples {σtk, ρt}, t = 1, 2, . . .
that are sufficiently close to the optimal dual variables. The merits of
stochastic approximation techniques are threefold: 1) the joint distri-
bution of {wt, at} is not required; 2) the computational complexity
of stochastic approximation schemes is significantly lower than that
of their off-line counterparts; and 3) stochastic schemes can cope
with non-stationary environments. In fact, stochastic schemes are
causal, meaning that at time t, only the history of the system up to
time t, i.e., {wτ , aτ}tτ=1, is required.

With µσ > 0 and µρ > 0 denoting constant stepsizes, the fol-
lowing stochastic iterations yield the desired multipliers for all t:

ρt+1 =
[
ρt − µρ

(
ηche

t∗
in(λt)− et∗out(λt)

)]+
(6)

σt+1
k =

[
σtk + µσ

(
s̃k(σtk)− st∗k (λt)

)]+
(7)

where [x]+ = max{x, 0}. The update terms in the right-hand sides
of (6) and (7) form an unbiased stochastic subgradient of the dual
function of (4), and they are bounded almost surely; see e.g., [14,
20]. It can be shown that the sample average of the solution of the
LP using the iterates ρt, {σtk}Kk=1 instead of λ satisfies the long-
term constraints in (4), and incurs minimal performance loss relative
to the optimal (off-line) solution of (4). Rigorously stated, define
µ := max{µσ, µρ}; s̄tk := 1

t

∑t

τ=1
sτ∗k (λτ ); J̄t :=

∑
k
Jk(s̄tk) +

1
t

∑t

τ=1
aτ bτ∗(λτ ) and J∗ as the optimal value of (4). Then, it

holds with probability one that as t→∞, 1) the solution is feasible;
and 2) J̄t ≤ J∗ + δ(µ), where δ(µ)→ 0 as µ→ 0. A proof of this
result is not presented here due to space limitations, but it relies on
the convergence of stochastic (epsilon) subgradient methods and can
be derived following the lines of [20, 21].

In the context of energy-harvesting sensor networks, it has been
recently shown that an alternative way to estimate ρ∗ stochastically
is to replace (6) with (cf. [13])

ρt = [C − µρrt]+ (8)

where C is a design constant to be selected based on the battery
capacity and rt is updated recursively according to (2). In words, a
scaled version of the battery level rt can be used as an estimate of ρ∗.
Since ρ∗ can be viewed as the price of the energy stored in the bat-
tery, (8) states that the estimate of the stored energy price decreases
as the amount of energy actually stored in the battery increases.

4.2. Resource allocation algorithm

With all previous considerations in mind, Algorithm 1 is the on-
line solver for (4). The algorithm implements the solution given
in Proposition 1 after replacing σk and ρ with the stochastic esti-
mates σtk and ρt in (7) and (8), respectively, with two modifications
described next.
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Algorithm 1 Load shedding with procurement and storage

For each k, initialize σ1
k to a small random number.

for t = 1, . . . , T do
[s1] Find s̃∗k(σtk) for all k using Prop. 1.a.
[s2.0] Set the value of ρt using (8).
[s2.1] If πt − wt ≤ 0, then find etin, et∗out, bt∗ and st∗k using
Prop. 1.b.1 with σk = σtk and ρ = ρt. Go to [s3].
[s2.2.1] If πt − wt > 0, then set etin = 0 and solve the LP in
Prop. 1.b.2 with σk = σtk and ρ = ρt and replacing emax

out with
ẽmax
out := min{emax

out , r
t}. If multiple solutions exist, pick one

at random. Go to [s3].
[s3] Using the outputs of steps [s1] and [s2], update the battery
rt via (2) and σtk via (7).

end for

First, to account for the battery limits, the actual value of rt is
used in the algorithm (cf. Step [s2.0]) and the upper bound emax

out

is replaced by ẽmax
out (cf. Step [s2.2.1]). This way, we guarantee

that the solution is feasible not only for (4), but also over a finite
horizon. Note however that by properly choosing the constants in
(8), re-defining the bound ẽmax

out is not necessary. To illustrate this,
suppose that C in (8) is set to a very high value. Then, the price of
etout when rt → 0 will be very high, so that it is very unlikely for
the the solution to set etout > 0 and, hence, to deplete the battery.

The second modification deals with the event of two resources
corresponding to the minimum price (i.e., multiple solutions to the
LP in Prop. 1.b.2). In such a hypothetical event, the algorithm just
picks one of them at random. Intuitively, such an event will not affect
the long-term feasibility, because small deviations from the optimal
solution that could potentially render the long-term constraints infea-
sible, are immediately compensated via the update of the multipliers
associated with those constraints. In addition, since the values of the
multipliers are random, the event that two or more of them taking the
exact same value is highly unlikely—especially when the number of
values that the random variables can take grows large.

5. NUMERICAL TESTS

A system with K = 50 residential users is considered. The hori-
zon consists of T = 21600 2-minute intervals over 30 days. There
are two classes of users with cost functions Jk(sk) = 0.5s2k for
1 ≤ k ≤ 25, and Jk(sk) = s2k for 26 ≤ k ≤ 50. The quantity πt

follows a daily pattern peaking in the early evening at 300 kW, and
having lowest values in late night hours—see [17, Fig. 4] and [22,
Ch. 2] for examples. The real-time prices are selected i.i.d. uniform
over the interval (0, 5) cents/kW. The system also has installed wind
capacity of 130kW. The samples wt are generated i.i.d., using the
sampling method and parameters detailed in [23]. The battery capac-
ity is R = 50kWh. Instantaneous bounds on the decision variables
were selected so that they are not binding, in order to simplify the
presentation. The online algorithm of Table 1 is used with stepsizes
µρ = 0.001 and µσ = 0.5, and battery parameter C = 10.

The convergence of the Lagrange multipliers σk is depicted in
Fig. 1, where it is seen that they all converge to the same value, as it is
expected for this system. The energy shortage and the load shedding,
real-time energy procurement, and battery charging/discharging de-
cisions are illustrated in Fig. 2. It is interesting to note that the
peaks of load shedding coincide with the shortage peaks. But not
all shortage is covered by load shedding; in fact the battery is also
discharged, while buying energy happens less frequently. The rea-
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Fig. 1. Convergence of Lagrange multipliers.

son for less frequent energy procurement here is that the prices at

are generally higher than the user marginal costs—that is, the values
of the derivatives J ′k(s) at the optimal point.

The latter are shown in the bottom plot of Fig. 3, while the top
part illustrates the running averages s̄k of the load shedding deci-
sions. Note that the derivatives J ′k(s̄k) have roughly the same values
as the Lagrange multipliers (cf. Fig. 1), which is another manifes-
tation of the proper algorithm convergence. It is finally interesting
to observe how the different choice of user cost functions leads to
different load shedding decisions. Specifically, Class 1 users have
double load shedding in the long run than Class 2 users. This is ex-
plained by the fact that user cost derivatives must be equal across all
users, and these derivatives are linear in the case of quadratic cost
functions.
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derivatives J ′k(s) evaluated at s̄k. The x-axis is user index.

6517



6. REFERENCES

[1] J. Zhu, Optimization of power system operation, Wiley-IEEE,
Hoboken, NJ, 2009.

[2] D. Xu and A.A. Girgis, “Optimal load shedding strategy in
power systems with distributed generation,” in Proc. IEEE
Power Engineering Society Winter Meeting, Columbus, OH,
Jan. 2001, vol. 2, pp. 788–793.

[3] L. Jiang and S. H. Low, “Real-time demand response with un-
certain renewable energy in smart grid,” in Proc. 49th Allerton
Conf. Communications, Control, and Computing, Monticello,
IL, Sept. 2011, pp. 1334–1341.

[4] M. He, S. Murugesan, and J. Zhang, “Multiple timescale dis-
patch and scheduling for stochastic reliability in smart grids
with wind generation integration,” in Proc. IEEE INFOCOM,
Shanghai, China, Apr. 2011, pp. 461–465.

[5] A. Papavasiliou and S. S. Oren, “Supplying renewable energy
to deferrable loads: Algorithms and economic analysis,” in
Proc. IEEE Power and Energy Society General Meeting, Min-
neapolis, MN, July 2010, pp. 1–8.

[6] I. Koutsopoulos, V. Hatzi, and L. Tassiulas, “Optimal energy
and storage control policies for the smart power grid,” in Proc.
2nd IEEE Int. Conf. Smart Grid Communications, Brussels,
Belgium, Oct. 2011, pp. 475–480.

[7] M. J. Neely, A. S. Tehrani, and A. G. Dimakis, “Efficient al-
gorithms for renewable energy allocation to delay tolerant con-
sumers,” in Proc. 1st Int. Conf. Smart Grid Communications,
Gaithersburg, MD, Oct. 2010, pp. 549–554.

[8] L. Huang, J. Walran, and K. Ramchandran, “Optimal de-
mand response with energy storage management,” May 2012,
http://arxiv.org/abs/1205.4297/.

[9] A. Conejo, M. Carrion, and J. M. Morales, Decision Making
Under Uncertainty in Electricity Markets, Springer, New York,
NY, 2010.

[10] S. V. Dhople and A. D. Dominguez-Garcia, “A framework to
determine the probability density function for the output power
of wind farms,” in Proc. North American Power Symp., Ur-
bana, IL, Sept. 2012.

[11] J. A. Carta, P. Ramı́rez, and S. Velázquez, “A review of wind
speed probability distributions used in wind energy analysis:
Case studies in the Canary islands,” Renew. Sust. Energ. Rev.,
vol. 13, pp. 933–955, 2009.

[12] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle,
“Layering as optimization decomposition: A mathematical
theory of network architectures,” Proc. of the IEEE, vol. 95,
no. 1, pp. 255–312, Jan. 2007.

[13] J. Fernandez-Bes, A. G. Marques, and J. Cid-Sueiro, “Battery-
aware selective communications in energy-harvesting sensor
networks: Optimal solution and stochastic dual approxima-
tion,” in Proc. 10th Int. Symp. Wireless Communication Sys-
tems, Aug. 2013.

[14] D. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis
and Optimization, Athena Scientic, 2003.

[15] A. G. Marques, G. B. Giannakis, and J. Ramos, “Optimizing
orthogonal multiple access based on quantized channel state
information,” IEEE Trans. Sig. Proc., vol. 59, no. 10, pp. 5023–
5038, Oct. 2011.

[16] N. Gatsis, A. Ribeiro, and G. B. Giannakis, “A class of con-
vergent algorithms for resource allocation in wireless fading
networks,” IEEE Trans. Wireless Commun., vol. 9, no. 5, pp.
1808–1823, May 2010.

[17] N. Gatsis and G. B. Giannakis, “Residential load control: Dis-
tributed scheduling and convergence with lost AMI messages,”
IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 770–786, June 2012.

[18] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource alloca-
tion and cross-layer control in wireless networks,” Foundations
and Trends in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[19] A. G. Marques, X. Wang, and G. B. Giannakis, “Dynamic
resource management for cognitive radios using limited-rate
feedback,” IEEE Trans. Sig. Proc., vol. 57, no. 9, pp. 3651–
3666, Sep. 2009.

[20] A. Ribeiro, “Ergodic stochastic optimization algorithms for
wireless communication and networking,” IEEE Trans. Sig.
Proc., vol. 58, no. 12, pp. 6369–6386, Dec. 2010.

[21] A. G. Marques, L. M. Lopez-Ramos, G. B. Giannakis,
J. Ramos, and A. Caamano, “Optimal cross-layer resource
allocation in cellular networks using channel and queue state
information,” IEEE Trans. Veh. Technol., vol. 61, no. 6, pp.
2789 – 2807, Jul. 2012.

[22] H. Lee Willis, Power Distribution Planning Reference Book,
CRC Press, New York, NY, 2nd edition, 2004.

[23] Y. Zhang, N. Gatsis, and G. B. Giannakis, “Risk-constrained
energy management with multiple wind farms,” in Proc. IEEE
Innovative Smart Grid Technologies Conf., Washington, D.C.,
Feb. 2013.

6518


