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ABSTRACT

In distributed wireless storage systems, failed recovery prob-

ability depends on not only wireless channel conditions but

also storage size of each distributed storage node. For effi-

cient utilization of limited storage capacity, we asymptoti-

cally analyze the failed recovery probability of a distributed

wireless storage system with a sum storage capacity con-

straint when signal-to-noise ratio goes to infinity, and find the

optimal storage allocation strategy across distributed storage

nodes in terms of the asymptotic failed recovery probability.

It is also shown that when the number of storage nodes is

sufficiently large the storage size required at each node is

not so large for high exponential order of the failed recovery

probability.

Index Terms— Distributed storage system, wireless stor-

age, maximum distance separable coding, failed recovery.

1. INTRODUCTION

In recent years, the advent of social networks, high-definition

(HD) video sharing, and cloud storage require seamless large-

scale storage. Distributed storage systems are regarded as a

key solution for the demand because distributed storage sys-

tems can efficiently utilize limited storage capacity and in-

crease reliability of data storing and recovery.

To improve reliability of data storing and recovery, net-

work coding techniques have been applied to distributed stor-

age systems. The functional repair problem in distributed

storage systems was studied in [1] by interpreting the prob-

lem as a multicasting problem over an information flow graph.

For the exact repair, Rashmi et al. [2] showed that the optimal

minimum bandwidth regenerating (MBR) code can be found

for d = n − 1, where d and n are the number of surviving

nodes and the number of storage nodes, respectively. Suh and

Ramchandran [3] found the exact minimum storage regener-

ating (MSR) code by interference alignment when k
n

≤ 1
2

and d ≥ 2k − 1, where k is the minimum number of nodes

required for data recovery. Other key issues on network codes

for distributed storage are well summarized in [4].
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Fig. 1. A distributed wireless storage system model consti-

tuted by data storing and recovery phases

For efficient utilization of limited storage capacity, re-

source allocation in distributed storage systems has been ac-

tively researched. Leong et al. [5] studied a storage allocation

problem under a constraint of total storage capacity. They an-

alyzed recovery probability at the data collector when the link

connection probability from each node to the data collector is

p, and found the asymptotically optimal allocation policies in

terms of recovery probability for large and small total stor-

age budgets, respectively. Ntranos et al. [6] extended the re-

sult of [5] to a distributed storage system with heterogeneous

links where the connection probability from node i to the data

collector is pi. Although the links modeled by Bernoulli ran-

dom variables partially characterize imperfect channels, they

do not exactly address key features of wireless links such as

channel fading.

In this context, we consider a distributed wireless stor-

age system where data storing and recovery are carried out

through wireless fading channels. We analyze and charac-

terize failed recovery probability in an asymptotic sense, and

quantify the effect of limited storage capacity on the asymp-

totic failed recovery probability. We also find the optimal stor-

age allocation under a constraint of total storage capacity; the

optimal allocation strategy is to equally allocate the total stor-

age budget to distributed storage nodes. We also show that
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the storage size required at each node is not so much for high

exponential order of the failed recover probability when the

number of storage nodes is sufficiently large.

2. SYSTEM MODEL AND NOTATIONS

2.1. System Model

As shown in Fig. 1, the number of storage nodes is set to

K . The source, the collector, and the storage nodes are de-

noted by s, d and {1, . . . ,K}, respectively. The collector

node recovers the stored data from the storage nodes so that

the direct link from the source node to the data collector does

not exist. Let si be the amount of coded data stored in stor-

age node i ∈ {1, . . . ,K}. In our model, each storage node

does not have an individual restriction on the storage size but

the maximum amount of data stored at each storage node is

T because the total storage budget is limited to T such that
∑K

i=1 si ≤ T. For storing data object, the source node broad-

casts the data object to the storage nodes during a given time

period. We assume that the size of data object is normalized

to be unit compared to the total storage capacity. The received

signal at the storage node i is given by

yi = hsixs + zi (1)

where x is the Gaussian distributed data object from the

source with an average power constraint E [|xs|2] ≤ P . The

channel gain from node i to node j and an additive white

Gaussian noise (AWGN) are denoted by hsi ∼ CN (0, 1) and

zi ∼ CN (0, N0), respectively. We denote ρ = P/N0 as the

average receive signal-to-noise ratio (SNR) of a link.

If a storage node has successfully decoded the broadcast

data object from the source, the storage node converts the de-

coded data object into suitable MDS coded data, and stores it.

The amount of MDS coded data stored at node i (∈ D) is si,
whereD is the decoding set whose elements are storage nodes

which have successfully decoded the broadcast data object.

Successful decoding is possible only when the instantaneous

mutual information between the source node and storage node

i is greater than or equal to the required rate of the data object,

i.e., log2(1 + ρ|hs,i|2) ≥ R. The data object is not properly

stored if
∑

i∈D si ≤ 1 because the data object cannot be prop-

erly recovered from the stored MDS coded data. On the other

hand, if
∑

i∈D si > 1, the collector node has a chance to

properly recover the data object from the stored MDS coded

data depending on channel conditions from the storage nodes

to the collector node. Note that instead of MDS coding, ran-

dom linear coding over a sufficiently large field can be also

used for data object recovery [7].

When the data collector wants to recover the data object,

it requests the storage nodes in the decoding set to send the

stored MDS coded data. We assume storage node i ∈ D
transmits during a ti = si/

∑

k∈D sk fraction of given time

period for the recovery stage. That is, the storage node with a

larger amount of stored MDS coded data spends more time in

the time period for the recovery stage.

2.2. Notations

The exponential equality is denoted as the symbol
.
=, i.e.,

f(ρ)
.
= ρb, when

lim
ρ→∞

log (f(ρ))

log(ρ)
= b. (2)

In (2), b is called the exponential order of f(ρ). Assume

that h is a Gaussian random variable with zero mean and unit

variance. Then, the asymptotic probability density function

(pdf) of the exponential order of 1/|h|2 denoted by v could be

shown to be pv = limρ→∞ ln(ρ)ρ−v exp(−ρ−v) where v =

− limρ→∞
log(|h|2)
log(ρ) . By limiting ρ to infinity, the pdf of v is

given by

pv
.
=

{

ρ−∞ = 0, for v < 0,
ρ−v, for v ≥ 0.

(3)

Thus, for independent random variables {vj}
K
j=1 distributed

identically to v, the probability PO that (v1, . . . , vK) belongs

to a non-empty set O can be characterized by

PO
.
= ρ−d0 , for d0 = inf

(v1,...,vK)∈O+

K
∑

j=1

vj . (4)

3. ASYMPTOTIC ANALYSIS OF

THE FAILED RECOVERY PROBABILITY

For the system model described in the previous section, the

failed recovery probability (the complimentary recover prob-

ability) is hard to obtain in a closed form as noted in [5]. We

instead analyze the failed recovery probability for high SNR

to understand its asymptotic behavior. That is, we derive the

exponential order of the failed recovery probability and find

the optimal storage allocation to maximize the exponential or-

der. The exponential order characterizes the decreasing ten-

dency of the failed recovery probability versus SNR, and is

interpreted as diversity order if bit error probability or outage

probability is considered in traditional wireless communica-

tion systems. Contrary to the conventional diversity order, the

exponential order of the failed recovery probability is deter-

mined by not only the number of independent fading paths for

data storing and recovery but also limited total storage capac-

ity.

Theorem 1. With a resource allocation vector s = {s1, . . . , sK},

the exponential order of the failed recovery probability is de-

termined as

d(s) = min
D⊆{1,...,K}

(

K − |D|+min
i∈D

ti
−1 · 1[

∑

k∈D

sk ≥ 1]

)

.

(5)
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Proof. By the law of total probability, the failed recovery

probability is given by

Prf [R] =
∑

D⊆{1,...,K}

Prf [R | D]Pr[D] (6)

where R is the rate of data object (which is equivalent to the

data object size). The probability for a decoding set D is ob-

tained as

Pr[D] =
∏

i∈D

Pr
[

log2(1 + ρ|hs,i|
2) > R

]

×
∏

i∈{1,...,K}\D

Pr
[

log2(1 + ρ|hs,i|
2) < R

]

(7)

× Pr
[

log2(1 + ρ|h|2)k < R
]K−|D|

(8)

=

(

e−
2R−1

ρ

)|D|(

1− e−
2R−1

ρ

)K−|D|

(9)

(a)
≈ ρ−(K−|D|) (10)

where |D| is the cardinality of the decoding set D and the

approximation of (a) comes from the Taylor’s expansion as

ρ → ∞. For a given decoding set D, the conditional failed

recovery probability with given a decoding is obtained as

Prf [R | D] =Pr[
∑

i∈D

ti log2(1 + ρ|hi,d|
2) < R]1[

∑

k∈D

sk ≥ 1]

+ 1[
∑

k∈D

sk < 1] (11)

(a).
=

{

ρ−mini∈D ti
−1

, for
∑

k∈D sk ≥ 1,
1, for

∑

k∈D sk < 1

(12)

where ti = si/
∑

k∈D sk and 1(·) is the indicator function

which returns 1 if the argument is true or 0 otherwise. The

exponential equality (a) is proved by using the exponential

order and (4) such that

Pr

[

∑

i∈D

ti log(1 + |hi,d|
2ρ) < R

]

.
= Pr

[

∑

i∈D

ti(1− vi) < 0

]

.
= ρ−mini∈D ti

−1

(13)

where vk is the exponential order of 1/|hk,d|2. Note that re-

covery fails if
∑

k∈D sk < 1 due to the property of MDS code

and if
∑

k∈D sk ≥ 1 the failed recovery probability mainly

depends on the cardinality of the decoding set. Combining

(10) and (12), the failed recovery probability can be obtained

as in Theorem 1.

From Theorem 1, we can also find the optimal storage

allocation to maximize the exponential order. The following

corollaries are used for finding the optimal storage allocation.

Corollary 1. For the non-trivial total storage capacity

T (> 1), the optimal storage allocation in terms of expo-

nential order is to symmetrically allocate the sum storage

capacity acorss all storage nodes.

Proof. Our optimization problem is formulated as

max
s

d(s)

subject to s1 + s2 + · · ·+ sK = T, (14)

si ≥ 0 ∀i. (15)

For a given decoding set, the termmini∈D ti
−1·1[

∑

k∈D sk ≥
1] in d(s) has to be maximized. To maximize mini∈D ti

−1,

each storage node in the decoding set has the same stor-

age size. For si = T
|D| , the term 1[

∑

k∈D sk ≥ 1] ob-

viously becomes 1. Consequently, the term d(s) is maxi-

mized when si = T
|D| . On the other hand, for all possi-

ble D ⊆ {1, . . . ,K}, the decoding set with full cardinal-

ity (i.e., |D| = K) minimizes the exponential order d(s).
Therefore, the exponential order d(s) is maximized when

s1 = · · · = sK = T
K

.

Corollary 2. For given K and T , the optimal exponential

order of the failed recovery probability is

d∗(K,T ) = K −

⌈

K

T

⌉

+ 1 (16)

with the optimal storage allocation policy.

Proof. From Corollary 1 and Theorem 1, we can get the result

(16).

Remark 1. Corollary 1 is on the same line with the result of

[5]. The maximal spreading of the sum storage capacity T (>
1) yields the optimal recovery probability even for distributed

wireless storage systems suffering from channel fading.

.

Remark 2. The optimal exponential order of the failed re-

covery probability is bounded by
(

1− 1
T

)

K ≤ d∗(K,T ) ≤
(

1− 1
T

)

K+1. Thus, the approximated slope of the exponen-

tial order is
(

1− 1
T

)

, which is strictly less than 1, for the sum

storage capacity T .

Although the exponential order well characterizes asymp-

totic behavior of the failed recovery probability, we also de-

rive a high-SNR approximation of the failed recovery proba-

bility for better understanding of recovery success and failure

when the sum storage capacity constraint is equally and max-

imally allocated to each storage node.

Theorem 2. When SNR is sufficiently high, the failed recov-

ery probability is approximated as

Pr
high

f [R]

=

(

K

⌈K
T
⌉ − 1

)

(2R − 1)K−⌈K
T
⌉+1ρ−(K−⌈K

T
⌉+1) (17)
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Proof. When SNR is sufficiently high, the failed recovery

probability is dominated by the probability when |D| =
⌈K
T
⌉ − 1 (i.e., the worst exponential order) which is given by

Pr [|D| = ⌈K/T ⌉ − 1]

=

(

K

⌈K
T
⌉ − 1

)

Pr[log2(1 + ρ|h|2) > R]⌈
K
T
⌉−1

× Pr[log2(1 + ρ|h|2) < R]K−⌈K
T
⌉+1 (18)

(a)
≈

(

K

⌈K
T
⌉ − 1

)(

2R − 1

ρ

)K−⌈K
T
⌉+1

(19)

where (a) is due to Taylor’s expansion as ρ → ∞.

4. NUMERICAL RESULTS

Fig. 2 shows that the exponential order of the failed recovery

probability increases with the number of storage nodes re-

gardless of sum storage constraints, but the increasing slopes

depends on the sum storage constraints. For T = 2, the ex-

ponential order is limited and the increasing slope of the ex-

ponential order is 1
2 as noted in Remark 2 because the sum

storage constraint is small. Fig. 3 shows the effect of the

sum storage capacity constraint on the exponential order of

the failed recovery probability when the number of storage

nodes is fixed. As the number of storage nodes increases, the

storage size at each node required for the near optimal expo-

nential order becomes smaller. For example, to obtain 80% of

the maximum exponential order under an unlimited sum stor-

age constraint, the required storage sizes at each node (i.e.,

T/K) are just si = 1/40 and si = 1/3 for K = 200 and

K = 10, respectively, as marked as black circles in Fig. 3.

The failed recovery probability is also presented in Fig. 4.

The figure shows that the asymptotic analysis of the failed

recovery probability characterizes the exact failed recovery

probability. As shown in the results of exponential order,

the failed recovery probability is degraded as the sum stor-

age capacity is smaller. Also, it is also verified that the high-

SNR approximation matches well with the simulation results

if SNR is greater than 10 dB.

5. CONCLUSIONS

This paper analyzed the failed recovery probability in an

asymptotic sense, and showed that the exponential order of

the failed recovery probability depends on the number of in-

dependent fading paths for storing and recovery but also the

sum storage capacity constraint. We proved that the expo-

nential order of the failed recovery probability is maximized

when the sum storage capacity is equally allocated across

storage nodes. It was also showed that the failed recov-

ery probability can be well approximated in the high-SNR

region.
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