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ABSTRACT

In this paper, we consider the 1-bit compressive sensing re-

construction problem in a scenario that the sparsity level of

the signal is unknown and time variant, and the binary mea-

surements are contaminated with the noise. We introduce

a new reconstruction algorithm which we refer to as Noise-
Adaptive Restricted Step Shrinkage (NARSS). NARSS is su-

perior in terms of performance, complexity and speed of con-

vergence to the algorithms already introduced in the literature

for 1-bit compressive sensing reconstruction from the noisy

binary measurements.

Index Terms— one bit quantization, compressive sensing

(CS).

1. INTRODUCTION

Compressive sensing (CS) is a new method of signal acquisi-

tion in which certain signals can be sampled and perfectly re-

constructed at a rate significantly below the Nyquist rate [1,2].

In CS, the signal is acquired by few non-adaptive linear pro-

jections. The signal is reconstructed from these projections

typically using an optimization process [2]. The exact signal

recovery is guaranteed when the matrix representing the lin-

ear projections has nearly orthonormal columns and satisfies

the restricted isometry property [3], and the signal is suffi-

ciently sparse, i.e. most of the elements in the signal vector

are zero or near-zero [1, 3].

There is a variety of approaches to reconstruct a signal

from compressive measurements [4–8]. They are generally

based on the assumption that the obtained measurements

have infinite bit precision, i.e., they can be any real-number.

In practice, however, the obtained measurements need to be

quantized in order to be stored and/or transmitted through a

channel. In this context, 1-bit CS is referred to a case where

CS measurements are quantized by a one bit quantizer, i.e.,

the measurements are represented by only two alternative

levels, e.g., −1 and +1. Since each measurement is shown

by a single bit, more measurements can be afforded for a

given bit budget than in the conventional quantized CS ap-

proaches [9]. The one bit quantizer is basically a simple

comparator and very fast and easy to implement. Therefore,

1-bit CS is highly favourable in high-speed signal processing

applications [10, 11].

Based on convex optimization techniques, some interest-

ing 1-bit CS approaches are discussed in [12, 13]. In this

work, the focus is on the iterative 1-bit CS reconstruction al-

gorithms due to their simple implementation. There are var-

ious other iterative reconstruction algorithms for 1-bit CS in

the literature, e.g., Binary iterative hard thresholding (BIHT)

[14], renormalized fixed point iterative (RFPI) [15] and re-
stricted step shrinkage (RSS) [16]. While BIHT needs to

know the sparsity level of the signal, RFPI and RSS do not

need such a priori information.

In many applications, the binary measurements are trans-

mitted through a noisy channel to the reconstruction part.

The channel noise causes errors in the transmitted binary data

which can be modelled as random bit flips. In addition, the

error in the measurement process may also cause random

bit flips [17]. In the presence of the random bit flips, BIHT,

RFPI and RSS have poor reconstruction performance. Then,

Adaptive outlier pursuit with bit flips (AOP-f) [17] and noise-
adaptive renormalized fixed point iterative (NARFPI) [18]

have been introduced to cope with the random bit flip effect.

In the case that the sparsity level of the signal is unknown

and time-variant, NARFPI outperforms AOP-f since it does

not need the sparsity level of the signal as an input. However,

NARFPI has a high computational cost and its performance

is strongly dependent on the choice of the initial point.

In this paper, we introduce a new reconstruction method

which we refer to as noise-adaptive restricted step shrinkage
(NARSS). Through numerical results, we show that NARSS

outperforms NARFPI in terms of complexity, output perfor-

mance and convergence speed.

2. 1-BIT COMPRESSIVE SENSING SETUP

Consider a signal represented by a vector x ∈ R
N . The vec-

tor x is called K-sparse when there are only K non-zero ele-

ments in x. In addition, consider a finite set {y1, y2, . . . , yM}
of linear projections of x each obtained by

yi = ΦT
i x and i = 1, . . . , M (1)
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where Φi is the ith projection vector. The M linear projec-

tions of the signal can be shown by yT = (y1, y2, . . . , yM ).
Hence, we have

y = Φx (2)

where the ith row of matrix Φ ∈ R
N×M is ΦT

i . The binary

measurements vector b is further obtained by

b = sign (y) (3)

where y is given in (2). When the binary measurements are

transmitted through a noisy channel, the elements of the vec-

tor b might flip randomly. Let us denote the received bits

vector by b̃ and define L as the number of bit flips. There-

fore, L can be derived by computing the negative elements of

b� b̃ where � denotes element-wise product.

The goal is to reconstruct x from the received binary mea-

surements b̃, with the knowledge of L (or an estimate of L)

and without any information about the sparsity level K of x.

3. NOISE-ADAPTIVE RESTRICTED STEP
SHRINKAGE

The main contribution of this paper is to propose a recon-

struction algorithm for 1-bit CS problem explained in Section

2. As discussed in Section 1, RSS is designed for the case

that b̃ = b (no bit flips). In the first part of this section, we

review RSS [16] and in the second part, we modify RSS and

introduce NARSS which is robust against the bit flips.

3.1. Restricted Step Shrinkage (RSS)

In the case that there are no bit flips, the received binary mea-

surements are identical to (3). This implies that

b�Φx � 0 (4)

where � denotes element-wise inequality. Since the �1 min-

imization is shown to consistently result in a sparse solu-

tion [1], RSS searches for a signal estimate with the smallest

�1-norm when (4) holds. Accordingly, RSS is defined as an

algorithm which solves the following optimization

x̂ = argmin
x

‖x‖1
subject to b� Φx � 0

and ‖x‖2 = 1

(5)

where the �2-norm constraint is an energy normalization to

avoid the trivial solution x̂ = 0. To solve (5) efficiently, it is

suggested in [16] to apply the augmented Lagrangian method,

and update x̂ iteratively through solving the following mini-

mization:

x̂n+1 = argmin
x

L (x,b, λn, μn)

subject to ‖x‖2 = 1
(6)

where λn ∈ R
M , μn > 0 and xn is the value of x in the nth

iteration. The Lagrangian function L in (6) is

L (x,b, λ, μ) = ‖x‖1 +
M∑
i=1

ν ([b� Φx]i , [λ]i , μ) (7)

where

ν (t, α, μ) =

{
−αt+ 1

2μt
2, if t− α

μ ≤ 0,

− 1
2μα

2, otherwise
(8)

and [·]i denotes the ith element of its argument. The RSS

algorithm solves (6) (RSS-Inner). Then, based on the current

estimate of the signal, λ and μ are updated (RSS-Outer) by

λn+1 = max
{
λn − μn

(
b�Φxn+1 − b

)
,0

}
(9)

μn+1 = kμn (10)

where k > 0 is a tuning parameter.

3.2. Noise-Adaptive Restricted Step Shrinkage (NARSS)

In this section, we modify RSS to make it robust against the

noise. Inspired by the method in NARFPI [18], we introduce

the bit flip detector vector, Ω ∈ {−1,+1}M which is defined

by

Ω = b� b̃ (11)

where b̃ denotes the noisy binary measurements vector. In

other words, the −1 elements in Ω show the positions of the

bit flips. Now, RSS can be modified by estimating Ω and

compensating the effect of the noise in the binary measure-

ments vector. Thus, we propose NARSS as an algorithm solv-

ing (
x̂, Ω̂

)
= argmin

x,Ω
L
(
x, b̃�Ω, λ, μ

)
subject to ‖x‖2 = 1

and
1

2

∑
i

(1− [Ω]i) = L̄

(12)

where L̄ is an estimate of L. The optimization in (12) can be

solved by iterating between the following two steps:

Step one: the signal is estimated when Ω̂ is fixed to the value

obtained from the previous iteration. Therefore, we have

x̂n+1 = argmin
x

L
(
x, b̃� Ω̂n, λn, μn

)
subject to ‖x‖2 = 1.

(13)

This is similar to (6) when b is replaced by b̃� Ω̂. Thus, (13)

can be solved through RSS-Inner [16].

Step two: the optimal Ω̂ is updated based on x̂ obtained from

(13). Hence,

Ω̂n+1 = argmin
Ω

L
(
x̂n+1, b̃�Ω, λn, μn

)
subject to

1

2

∑
i

(1− [Ω]i) = L̄
(14)
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Algorithm 1 NARSS

1. Inputs: vector of 1-bit measurements b̃ ∈ {±1}M ,
measuring matrix Φ, estimated number of bit flips L̄

2. Initialization: x̂0 and Ω̂0 are set to all-one vector,
μ0 = 100, k > 0, λ0 = 0 and b = b̃

3. Iteration: For n = 0, . . . , l

(a) Estimate the signal via RSS-Inner:
x̂n+1 = argmin

x
L (x,b, λn, μn)

subject to ‖x‖2 = 1

(b) Estimate the position of the bit flips: Find

Ω̂n+1 from (15). b ← b� Ω̂n+1

(c) Initialize next iteration:
λn+1 ← max

{
λn − μn

(
b�Φx̂n+1 − b

)
,0

}
,

μn+1 ← kμn

4. Output: x̂ = x̂l+1

which can be solved by the following result.

Theorem 1 The optimal Ω̂n+1 in (14) is given by[
Ω̂n+1

]
i
=

{−1, if [ε− − ε+]i ≤ β,
+1, otherwise

(15)

where
ε± =

(
μn

(
±b̃� Φxn+1

)
− λn

)−
(16)[

(x)
−
]
i
=

{|[x]i| , if [x]i < 0,
0, otherwise

(17)

and β is the L̄th smallest element in ε− − ε+.

A proof of Theorem 1 is given in the Appendix.

In summary, the subroutines of NARSS have been de-

picted in Algorithm 1 where step 3-b together with Theorem

1 are the key contribution of this work. The other steps have

been borrowed from RSS-outer in [16]. In the first iteration,

x̂0 and Ω̂0 are set to the all-one vectors.

4. NUMERICAL RESULTS

In this section, we investigate the reconstruction performance

of NARSS through numerical simulations. In the following

simulations, we set the signal vector length N = 1000 and

the number of measurements M = 2000. The sparsity level

of the signal is a random variable with a symmetric discrete

triangular distribution with mean 10 and variance σ2
K (where

K ∈ [1, 19]). The non-zero elements in the signal vector

are derived from a zero-mean Gaussian distribution with unit

variance and are distributed uniformly through the signal vec-

tor. The elements of the measuring matrix Φ are independent

random variables generated based on a zero-mean Gaussian

distribution with variance 1/M . We set the probability of the

0 5 10 15 205
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Variance of the sparsity level (σ2
K
)
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AOPF−l1 AOPF−l2 NARSS NARFPI RSS LP

Fig. 1: Performance comparison of different algorithms when
the sparsity level K is generated according to a triangular dis-
tribution with mean 10 and different variance σ2

K .

bit flips P = 3% and L̄ = MP . We show the quality of re-

construction in terms of received signal to noise ratio (RSNR)

which is defined by

RSNR = E

(
‖x‖22

)
/E

(
‖x− x̂‖22

)
. (18)

First we compare the performance of NARSS with AOPf-

�1, AOPf-�2 [17], NARFPI [18] and the linear program (LP)

proposed in [12]. Note that AOP-f is a modified version of

BIHT and its performance is an upper-bound for BIHT [17].

Therefore, we do not include BIHT in our simulations. As

discussed in Section I, AOPf-�1 and AOPf-�2 need to know

the sparsity level of the signal; However, we assume that the

sparsity level is not known to the algorithms and its statistical

distribution is the only available information. Therefore, for

AOPf-�1 and AOPf-�2 we set the sparsity level K to its mean

value, 10 as a reasonable estimate. Moreover, we fix the num-

ber of iterations in RSS-Inner to 100 and the number of outer

iterations l to 20. To have a fair comparison, we choose the

same number of iterations for the other algorithms. Figure 1

shows the performance of the algorithms versus the variance

of the sparsity level (σ2
K ∈ [0, 25]) averaged over 100 realiza-

tions.

As it can be seen, there is a significant improvement in

the performance of NARSS in comparison to that of RSS. In

addition, as σ2
K increases the performance of AOPf-�1 and

AOPf-�2 decreases dramatically. In contrast, the performance

of NARFPI and NARSS has the same trend and does not de-

pend on σ2
K [18]. NARSS outperforms the other algorithms

for σ2
K > 4. Though NARSS marginally surpasses NARFPI

in terms of performance, its significant computational advan-

tages are shown in the next simulations. In the next experi-

ment, we compare NARSS and NARFPI in terms of complex-

ity and convergence rate. The maximum number of inner iter-

ations in NARFPI and RSS-Inner is set to 100. In addition, the

maximum number of outer iterations in NARFPI and NARSS

is set to 20. We initialize NARFPI with two different val-

ues. In one case (NARFPI-i), similarly to NARSS, NARFPI

is initialized with an all-one vector. In another case, NARFPI
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Fig. 2: Comparison of complexity and convergence speed of
NARSS, NARFPI and NARFPI-i. NARSS and NARFPI con-
vege after 9 and 20 iterations, respectively.

Table 1: Performance of NARSS and NARFPI in different
noisy scenarios when σ2

K = 24.

Probability of bit flips 0.01% 0.1% 0.5% 1% 2% 3%
RSNR of NARSS (dB) 24.9 24.7 24.4 24 22.9 21.8
RSNR of NARFPI (dB) 24.6 24.3 23.6 23.2 22.1 21.2

is initialized by x̂0 = Φ†b̃/
∥∥∥Φ†b̃

∥∥∥
2

where Φ† denotes the

pseudo-inverse of Φ, which introduces a relatively high com-

putational burden. The normalized complexity of the algo-

rithms is shown by their run time in MATLAB. Since built-in

functions in MATLAB are highly optimized (especially for

matrix calculation), the run time can be a relative comparator

of the algorithm complexity. In Figure 2, the average run time

versus reconstruction performance is illustrated for different

number of iterations over 100 realizations when σ2
K = 24.

As Figure 2 shows, the performance of NARSS through

iterations increases with a higher slope (faster convergence)

in comparison to NARFPI and NARRPI-i. There is a signifi-

cant offset in the run time of NARFPI compared to NARFPI-i

due to the high complexity of the pseudo-inverse initializa-

tion. Comparing the two different initialization methods with

different levels of complexity, Figure 2 highlights the trade off

between the complexity and the reconstruction performance

in NARFPI and NARFPI-i.

To investigate the reconstruction performance over differ-

ent error rates, the reconstruction performance of NARSS and

NARFPI for different bit flip probabilities in the expected er-

ror range of interest is shown in Table 1. As it is illustrated,

NARSS performs considerably better than NARFPI.

5. CONCLUSION

To summarize, as we showed above, NARSS outperforms the

other algorithms when the sparsity level of the signal devi-

ates from its estimated value, and the signal is reconstructed

from noisy binary measurements. In terms of complexity,

NARSS surpasses NARFPI due to its less complex iterations

and simpler initialization. In addition, NARSS converges to

the optimal value with less number of iterations than the one

in NARFPI.

Appendix: Proof of Theorem 1
We can write (14) as

Ω̂n+1 = argmin
Ω

M∑
i=1

ν
([

Ω� b̃� (Φx̂n+1)
]
i
, [λn]i , μ

n
)

subject to
1

2

∑
i

(1− [Ω]i) = L̄.

(19)

We define

ν′ (t, α, μ) = μν (t, α, μ)− 1

2μ
α2 (20)

=

{
(μt− α)

2
, ifμt− α ≤ 0,

0, otherwise.

Solving for ν in (20) and replacing in (19), after some

straightforward simplifications, (19) can be written as

Ω̂n+1 = argmin
Ω

∥∥∥∥(μn
(
Ω� b̃� (Φx̂n+1)

)
− λn

)−∥∥∥∥2
2

subject to
1

2

∑
i

(1− [Ω]i) = L̄.

(21)

Since μ > 0, the solution of (14) and (21) are identical. In

order to solve combinatorial optimization (21), first we define

c =
(
μn

(
Ω� b̃� (Φx̂n+1)

)
− λn

)−
(22)

and the set S including the position of the bit flips (i.e. S ={
i |

[
Ω̂n+1

]
i
= −1

}
). In the rest of the proof, we equiva-

lently look for the optimal S instead, which we refer to as

Ŝ. Since [c]i ≥ 0 for all i, we can conclude from (21) that

Ŝ = argmin
S

∑M
i=1 [c]i where [c]i =

{
[ε+]i , if i /∈ S,

[ε−]i , if i ∈ S
and

ε+ and ε− are given by (16). It can simply be seen that

Ŝ = argmin
S

M∑
i=1

⎡
⎢⎣ε+ + c− ε+︸ ︷︷ ︸

ϕ

⎤
⎥⎦
i

= argmin
S

M∑
i=1

[ϕ]i (23)

where [ϕ]i =

{
0, if i /∈ S,

[ε− − ε+]i , if i ∈ S.
Therefore, to obtain

Ŝ we need to find the L̄ smallest elements of ε− − ε+. �
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