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ABSTRACT

This paper addresses compressed acquisition and progressive recon-

struction of spatially and temporally correlated signals in wireless

sensor networks (WSNs) via compressed sensing (CS). We propose

a novel method based on sliding window processing, where the sink

periodically collects CS measurements of sensor samples, and then,

instantaneously reconstructs current WSN samples by exploiting the

spatio-temporal correlation via Kronecker sparsifying bases. By us-

ing previous estimates as prior information, the method can progres-

sively improve the reconstruction accuracy of the signal ensemble.

Furthermore, the method can control the trade-off between decod-

ing delay and complexity. Numerical results demonstrate that the

proposed method can recover WSN data samples from CS measure-

ments with higher reconstruction accuracy, yet with lower decoding

delay and complexity, as compared to the state of the art methods.

Index Terms— Compressed sensing, spatio-temporal correla-

tion, sliding window processing, joint signal recovery, Kronecker

sparsifying bases, multi-hop wireless sensor networks

1. INTRODUCTION

Wireless sensor networks (WSNs) consisting of multiple battery-

powered sensors have been frequently proposed for monitoring or

measuring various types of natural phenomena, e.g., light, tempera-

ture or humidity. Typically, the observed sensor readings have both

temporal and spatial dependency. This dependency can be utilized

by a joint data acquisition and reconstruction method, compressed

sensing (CS) [1–6], which allows a signal of length N to be accu-

rately recovered from its M < N linear measurements.

Especially, the CS has established a promising foundation for

the development of energy efficient data gathering methods in multi-

hop WSNs [7–13]. By exploiting spatial (i.e., inter-signal) or tempo-

ral (i.e., intra-signal) correlation of the sensors via CS, the amount

of data traffic for data delivery can be reduced. For spatially cor-

related data, compressed acquisition can be performed, e.g., by lin-

early combining sensor measurements along multi-hop routing [9–

11, 13] or by collecting only a fraction of sensor readings [12, 13].

For temporally correlated data, each sensor can transmit CS mea-

surements of a block of its buffered data samples [13–15]. However,

as a drawback, this induces decoding delay for the estimates.

Apart from these works dealing with correlated signals in sin-

gle dimension, CS has been also proposed for utilizing joint intra-

and inter-signal dependencies. In [7, 16], joint sparsity models were
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proposed for representing particular joint dependencies of signal en-

sembles. Recently, Kronecker compressed sensing (KCS) [17] was

proposed for the acquisition of correlated multi-dimensional signals

via Kronecker sparsifying bases, which encode distinct correlation

patterns of each signal dimension into single basis. As the KCS fea-

tures blocks of data, the increased decoding delay and complexity

may arise as substantial restrictions for an application.

In this paper, we consider compressed acquisition and progres-

sive reconstruction of signals with spatio-temporal correlation in

multi-hop data gathering WSNs. As the main contribution, we pro-

pose a novel WSN data acquisition method based on sliding window

processing and Kronecker sparsifying bases [17], where the sink

can instantaneously reconstruct current data samples from period-

ically collected CS measurements. Furthermore, the method uses

multiple previously decoded estimates to progressively improve the

accuracy of signal estimates and can control the trade-off between

the decoding delay and complexity, making it suitable for delay-

constrained applications. Related works on CS reconstruction with

prior information utilization include [18–20], which consider gen-

eral sparse dynamic signal frameworks. The numerical experiments

show that our proposed method can recover WSN data samples with

higher reconstruction accuracy, yet with lower decoding delay and

complexity, as compared to the state of the art methods.

The paper is organized as follows. The WSN model is defined

in Section 2. The CS background is recapitulated in Section 3. Sec-

tion 4 discusses CS acquisition of multi-dimensional correlated sig-

nals. Our proposed method is derived in Section 5. Finally, Section 6

presents numerical results and Section 7 concludes the paper.

2. NETWORK MODEL

We consider a single-sink multi-hop WSN consisting of a set of ran-

domly deployed sensors indexed by integers N = {1, . . . , N}. At

each sensing period, they monitor a phenomenon to acquire T data

samples. The WSN readings are assumed to encompass spatial and

temporal dependency, as illustrated in Fig. 1 for N = 10 and T = 6.

The sensors, capable of transmitting, receiving and relaying

data, communicate in a pre-defined, fixed multi-hop routing struc-

ture. We assume appropriate medium access control and scheduling

for the system to support feasible data traffic across the wireless

links. The modeling of detailed packet transmission protocols and

physical layer parameters are outside the scope of this paper.

3. BACKGROUND ON COMPRESSED SENSING

Let x ∈ R
N be a real-valued vector. It can be represented in basis

Ψ ∈ R
N×N as x = Ψθ, where θ = [θ1, . . . , θN ]T are the trans-
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Fig. 1. A wireless sensor network with temporally and spatially cor-

related data samples with N = 10 and T = 6.

form domain coefficients. We say that x is K-sparse in Ψ if θ has

K non-zero entries. For natural signals, which typically are not ex-

actly sparse, K-compressibility plays a role similar to K-sparsity in

CS recovery performance [21]. Namely, the transform domain co-

efficients of a compressible signal, when ordered according to their

magnitudes, typically decay rapidly according to a power law [2].

By the CS, a signal x that is K-sparse (or K-compressible)

in Ψ can be accurately reconstructed from M < N linear (ran-

dom) measurements y = Φx = ΦΨθ = Υθ, where y ∈ R
M

are the measurements, Φ ∈ R
M×N is a measurement matrix and

Υ = ΦΨ ∈ R
M×N is the sensing matrix [6]. The signal can

be reconstructed via sparsity-encouraging L1-minimization as θ̂ :=
arg minθ ‖θ‖1 s.t. y = ΦΨθ, resulting in x̂ = Ψθ̂ [21].

Two key features for CS performance are the restricted isometry

property (RIP) and mutual coherence [17]. The RIP of Υ ensures

the measurements to approximately preserve the Euclidean length of

all K-sparse signals, whereas the mutual coherence between Ψ and

Φ determines the number of required measurements for successful

recovery [6]. Accordingly, e.g., i.i.d. Gaussian and Bernoulli Φ are

highly incoherent with any Ψ, satisfying the RIP (with overwhelm-

ing probability) for M ≥ CKlog(N/K) with a constant C > 0 [6].

4. COMPRESSED ACQUISITION OF

MULTI-DIMENSIONAL CORRELATED DATA

Let X ∈ R
T×N denote the 2D signal ensemble, which consists of

T data readings from each randomly positioned sensor i ∈ N . A

(t, i)th entry of X , denoted as xti, represents tth data sample of

sensor i ∈ N . The structure of X can be written as

X = [x1,x2, . . . ,xN ] = [x1,x2, . . . ,xT ]T, (1)

where column xi ∈ R
T represents the data samples of sensor i ∈ N

and row xt ∈ R
N are the WSN data readings at time instance t.

As depicted in Fig. 1, we assume spatio-temporal dependency in

sensor signal ensemble X . Then, each of its signal dimension has

a sparse (or compressible) representation in a proper basis, denoted

as ΨT ∈ R
T×T for temporal and ΨS ∈ R

N×N for spatial domain,

respectively. Thus, each WSN data sample vector xt, t = 1, . . . , T ,

can be represented as xt = ΨSθS,t, where θS,t ∈ R
N are the

KS,t-compressible coefficients in the spatial domain. By stacking

the coefficients as ΘS = [θS,1, . . . ,θS,T ], the spatial transformation

of signal X is compactly represented as XT = ΨSΘS, i.e.,

[x1, . . . ,xT ] = ΨS[θS,1, . . . ,θS,T ]. (2)

Similarly, each sensor signal xi, i = 1, . . . , N , can be repre-

sented as xi = ΨTθT,i, where θT,i ∈ R
T are the KT,i-

compressible coefficients in the temporal domain. By introducing

ΘT = [θT,1, . . . ,θT,N ], the temporal transformation of signal X

reads concisely as X = ΨTΘT, i.e.,

[x1, . . . ,xN ] = ΨT[θT,1, . . . ,θT,N ]. (3)

Kronecker sparsifying bases can succinctly combine the differ-

ent correlation patterns present in each signal dimension into a single

matrix [17]. Thus, we can merge the transformations (2) and (3) as

x = vec(XT) = vec(ΨSΘS)= vec
(

ΨSΘS

(

Ψ
T
T

)−1
Ψ

T
T

)

= vec
(

ΨSZΨ
T
T

)

= (ΨT⊗ΨS)vec(Z)
= Ψz,

(4)

where x = [(x1)T, . . . , (xT )T]T ∈ R
TN , ⊗ denotes the Kronecker

product, Ψ = (ΨT⊗ΨS) ∈ R
TN×TN is the Kronecker sparsifying

basis, and z = vec(Z) ∈ R
TN are the KJ-compressible coeffi-

cients for the joint spatio-temporal transformation.

At each time instance t = 1, . . . , T , we acquire CS measure-

ments vt ∈ R
Jt , Jt < N , of WSN data samples xt as

vt = Ωtx
t, t = 1, . . . , T, (5)

where Ωt ∈ R
Jt×N is the measurement matrix. By block-diagonal

measurement matrix Ω = diag{Ω1, . . . ,ΩT } ∈ R
J̄×NT , the mea-

surement process in (5) can be concisely expressed as

v = Ωx, (6)

where v = [vT
1 , . . . ,v

T
T ]

T ∈ R
J̄ represents the measurements, and

J̄ =
∑T

t=1 Jt denotes the total number of involved measurements.

In order to have an applicable and energy efficient delivery of

measurements (5) in the WSN, we will use a measurement process

where only a subset of the sensors report their readings to the sink

at each time instance [12,13]. This induces a particular structure for

Ωt ∈ R
Jt×N , i.e., it has all the entries zeros except exactly single

”1” at each row j = 1, . . . , Jt and at most single ”1” at each column

i = 1, . . . , N [12]. Thus, the projection performs sub-sampling of

each xt, as only Jt < N sensors are measured at each t = 1, . . . , T .

Enabled by the compressibility in the spatial domain (2), a con-

ventional CS decoding reconstructs each xt, t = 1, . . . , T , sepa-

rately from measurements (5) by solving

θ̂S,t := arg minθ ‖θ‖1 s.t. vt = ΩtΨSθ, (7)

resulting in x̂t = ΨSθ̂S,t. However, by exploiting the joint corre-

lation structure (4), the multi-dimensional signal X can be recon-

structed from measurements (6) by solving a joint recovery problem

ẑ := arg minz ‖z‖1 s.t. v = ΩΨz, (8)

where we obtain x̂ = Ψẑ = [(x̂1)T, . . . , (x̂T )T]T, which then can

be reshaped into X̂ = [x̂1, . . . , x̂N ] ∈ R
T×N .

5. PROGRESSIVE JOINT SIGNAL RECOVERY

In the previous section, the presented CS acquisition procedure es-

sentially follows the KCS framework [17], as the entire signal X is

jointly reconstructed in (8) from measurements (6) collected over T
time instances. Since the decoding delay and complexity of (8) is

proportional to T , the approach imposes additional restrictions for
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an application. In order to balance between the decoding delay and

complexity, we will derive a novel joint data acquisition and recon-

struction method which relies on sliding window mechanism in the

signal recovery. The sliding window processing allows not only to

instantaneously reconstruct current WSN samples, but also allows to

refine the accuracy of the estimates in successive decoding instances

by utilizing the prior information available from multiple previous

decoding instances.

The following basic notations will be used in the derivation. At

time instance t = 1, . . . , T , the data block inside the sliding win-

dow of size Wt > 0 is denoted as Xt
W ∈ R

Wt×N , referring to

a portion of signal X given in (1). Namely, Xt
W comprises of

Xt
W = [(Xt

B)
T,xt]T, where xt are the current WSN samples and

Xt
B = [xt−Dt , . . . ,xt−1]T ∈ R

Dt×N are the samples of Dt previ-

ous time instances, Dt = Wt − 1.

Owing to the joint signal compressibility in (4), we can represent

each data window Xt
W, t = 1, . . . , T , as

x
t
W = vec

(

[Xt
W]T

)

= (Ψt
TW

⊗ΨS)z
t
W = Ψ

t
Wz

t
W, (9)

where xt
W = [(xt−Dt)T, . . . , (xt)T]T ∈ R

NWt , Ψt
TW

∈ R
Wt×Wt

is the sparsifying basis for the temporal domain, Ψt
W ∈ R

NWt×NWt

is the Kronecker sparsifying basis and zt
W ∈ R

NWt denotes the

Kt
W-compressible coefficients for the joint spatio-temporal domain.

According to (6), the CS measurements associated with Xt, i.e.,

vt
W = [vT

t−Dt
, . . . ,vT

t ]
T ∈ R

J̄t , correspond to a portion of v as

v
t
W = Ω

t
Wx

t
W, t = 1, . . . , T (10)

where Ω
t
W = diag{Ωt−Dt

, . . . ,Ωt} ∈ R
J̄t×NWt is the block-

diagonal measurement matrix and J̄t =
∑t

τ=t−Dt
Jτ denotes the

total number of involved measurements. Similarly to (8), each Xt
W,

t = 1, . . . , T , can be reconstructed from measurements (10) as

ẑ
t
W := arg minz ‖z‖1 s.t. v

t
W = Ω

t
WΨ

t
Wz, (11)

resulting in x̂t
W = Ψ

t
Wẑt

W, which then can be reshaped into matrix

form of X̂
t

W = [x̂t−Dt , . . . , x̂t]T.

Depending on the chosen Wt, each xt may be included multiple

times in Xt
D associated with different time instances t = 1, . . . , T .

As a result, xt will be reconstructed several times in (11). Therefore,

the resulting signal estimates can be used as prior information in the

subsequent joint signal recovery instances of (11). Next, we will pro-

pose a novel method where the decoder utilizes the prior information

to improve the reconstruction accuracy for the signal ensemble X .

For notational convenience, but without loss of generality, let

us fix Wt = W , t ≥ W , when Dt = D. Let us assume that

the decoder has reconstructed estimates for the first W WSN data

samples, e.g., via the associated CS recovery (11). Then, at time

instance t > W , the already reconstructed estimates for D previous

WSN data samples are stored in decoder buffer bt ∈ R
DN as

b
t = x̂

t
B,(t−1) =

[(

x̂
t−D

(t−1)

)T
, . . . ,

(

x̂
t−1
(t−1)

)T]T
(12)

where x̂t−d

(t−1) ∈ R
N is the estimate of xt−d obtained at the decod-

ing instance t − 1, d = 1, . . . , D. Hence, the last N entries of bt

correspond to the estimates of the most recent WSN data, whereas

the first N entries contain the estimates of the most out-dated ones.

As the recovery problem (11) aims of jointly reconstructing the

data window Xt
W = [(Xt

B)
T,xt]T, the problem can be reformu-

lated to exploit the already achieved estimates x̂t
B,(t−1) stored in

(12). Thus, instead of (11), the decoder solves at each t > W a

modified joint recovery problem to obtain ẑt
W ∈ R

NW , i.e.,

minimize ‖z‖1 + ǫB
∥

∥ΨBz − bt
∥

∥

2

subject to vt
W = Ω

t
WΨWz,

(13)

where z = [z1, . . . , zNW ]T are the optimization variables, ǫB ≥ 0
is a weighting parameter and matrix ΨB ∈ R

ND×NW consists of

the first ND rows of sparsifying basis ΨW given in (9). As a result,

we obtain x̂t
W,(t) = ΨWẑt

W, which can be reshaped into X̂
t

W,(t).

Evidently, the regularization term is what differentiates problem

(13) from (11). With the variables obtained in (13), the term reads as

ǫB
∥

∥ΨBẑ
t
W − bt

∥

∥

2
, i.e., ǫB

∥

∥vec
(

X̂
t

B,(t)− X̂
t

B,(t−1)

)
∥

∥

2
. Thus, the

regularization induces additional penalty by the deviation between

the estimates of Xt
B obtained at consecutive decoding instances,

with respect to L2-norm. The emphasis between this deviation and

the L1-norm term, encouraging sparse or compressible variables z,

is controlled by parameter ǫB. Note that in general for ǫB > 0,

problems (13) and (11) have different solutions for t > W + 1.

The joint compressed data acquisition and progressive signal re-

covery method is summarized in Algorithm 1. It is worth noting that

the method can instantaneously reconstruct the WSN data samples,

beneficial for delay-stringent applications. If certain amount of delay

is allowed, these initial estimates can be progressively refined during

the D successive decoding instances. As the outcome, the process

keeps gradually rebuilding the final estimate based on the most re-

cent estimates, corresponding to Step IV in Algorithm 1. Hence, by

adjusting the sliding window size W ∈ [1, T ], the proposed method

can not only regulate the decoding delay of refined estimates, but

also allows to control the decoding complexity of problem (13).

6. NUMERICAL RESULTS

We considered WSNs with N = 16 and N = 36 sensors with the

sensing period of T = 60 data samples. The sensors were deployed

in an observation field of size 100
√
N × 100

√
N units as follows:

firstly, the field was divided into a
√
N ×

√
N -grid of square areas,

and then, each of these square areas of size 100 × 100 units was

randomly deployed one sensor according to the uniform distribution.

For N = 16 and N = 36, the monitoring fields comprised of

S = 2 and S = 4 randomly located independent sources, respec-

tively. The sources contributed additively to each sensor reading

as xti =
∑

s∈S fisβts, where fis is a time-invariant influence of

source s ∈ S on sensor i ∈ N and βts is the source magnitude.

The spatial dependency in each xt, t = 1, . . . , T , was created by as-

suming power exponential correlation for the influence functions as

Algorithm 1 Compressed Data Acquisition & Progressive Signal

Recovery Method

for t = 1, . . . , T do

I. CS Measurements

Deliver CS measurements of xt in (5) to the sink.

II. Progressive Joint Signal Recovery – given W , ǫB

if t = W : Solve (11)→ X̂
t

W,(t) = [x̂1
(t), . . . , x̂

W
(t)]

T.

if t > W : Solve (13)→ X̂
t

W,(t) = [x̂t−D

(t) , . . . , x̂t
(t)]

T.

III. Decoder Buffer Update

Set (12) as bt+1 = x̂t+1
B,(t) = [(x̂t−D+1

(t) )T, . . . , (x̂t
(t))

T]T.

IV. Signal Estimate Construction

Set X̂
t

W←X̂
t

W,(t).

end for
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fis = exp{−(dis/α1)
α2} [22], where dis is the distance between

sensor i ∈ N and source s ∈ S , and α1 and α2 are correlation

parameters, which were set as α1 = 1000 and α2 = 2. The tempo-

ral correlation in each xi, i ∈ N , was generated by the sequences

of slowly varying source magnitudes {β1s, β2s, . . . , βTs}, s ∈ S.

Fig. 2 depicts a source sequence for one simulated data field.

We will evaluate the performance of our proposed progressive

CS signal recovery method (Prog-CS) summarized in Algorithm 1 in

terms of CS reconstruction error, measured as ‖ˆ̄x− x̄‖2/‖x̄‖2. For

benchmarking, we considered two CS methods involving contrary

recovery procedures, i.e., 1) Kronecker CS (Kron-CS) which recov-

ers X at once by (8) with measurements (6), incurring a decoding

delay proportional to T , and 2) Spatial CS (Spat-CS) which instan-

taneously produces x̂t at each t = 1, . . . , T from (7) with measure-

ments (5), yet completely ignoring the temporal domain compress-

ibility. Since all three methods end up delivering the same mea-

surements (6), given the WSN, their data transportation costs are

equal. Thus, they can be compared by the number of measurements

required to obtain certain CS recovery error.

Due to the spatial distribution of the sensors, we applied

2D transformation to sparsify the data in the spatial domain.

Namely, each xt, t = 1, . . . , T , was reorganized into matrix

X̃
t ∈ R

√
N×

√
N , whose (i1, i2)th entry refers to a reading

of the sensor located at (i1, i2)th square of the
√
N ×

√
N -

grid, i1, i2 = 1, . . . ,
√
N . By (4), X̃

t
= ΨS1

Θ̃S,tΨ
T
S2

, and

thus, xt = vec(X̃
t
) = ΨSθS,t, where ΨS1

∈ R

√
N×

√
N and

ΨS2
∈ R

√
N×

√
N are the bases for the first and second spatial

dimension, respectively, ΨS = (ΨS2
⊗ΨS1

) is the Kronecker spar-

sifying basis, and θS,t ∈ R
N are the transform domain coefficients.

Fig. 3 depicts the average CS recovery error versus different

numbers of measurements for Prog-CS, Kron-CS and Spat-CS

with N = 16 and N = 36. For each method, we set J = Jt,

∀t = 1, . . . , T , and used the inverse of a DCT-matrix as each basis

ΨS1
, ΨS2

and ΨT. For N = 16, Prog-CS was run with sliding

window sizes W = [5, 15, 25] and fixed regularization parameters

ǫB = [1, 3, 4], respectively. For N = 36, we used W = [5, 15, 20]
and ǫB = [2, 3, 5], respectively. For W = 5, the figure also demon-

strates Prog-CS with ǫB = 0, i.e., without memory for previous

estimates. Additionally, to illustrate the effect of estimate refine-

ment, we depict Prog-CS for W = 5 with respect to the first, instan-

taneously obtained estimates (Prog-CSfirst), and the last estimates

after decoded W times (Prog-CSlast), respectively. All the involved

convex optimization problems were solved with l1−MAGIC [23] or

CVX [24] running in Matlab.

Fig. 3 shows that by exploiting joint spatio-temporal correlation

in Prog-CS and Kron-CS, the number of required CS measurements

can be significantly reduced as compared to Spat-CS, which ignores

the temporal correlation. It can be observed that by incorporating the

prior information on previous estimates in the decoding, the recovery

error noticeably decreases even for Prog-CSfirst. Obviously, the per-

formance increase becomes more evident with respect to the refined

estimates: for N = 16, the reconstruction accuracy of Prog-CSlast

with W = 15 matches that of Kron-CS, and by increasing the win-

dow to W = 25, Prog-CSlast can even slightly outperform Kron-CS.

Similarly for N = 36, Prog-CSlast with W = 20 yielded as accu-

rate estimates as Kron-CS. Hence, our proposed method was capa-

ble to achieve the same CS recovery performance as state of the art

Kron-CS, yet by reducing the decoding delay and complexity with

factor W/T = 1/4 and 1/3, respectively.
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Fig. 3. CS recovery performance of Prog-CS, Kron-CS and Spat-CS.

7. CONCLUSIONS

We addressed a framework of joint compressed acquisition and pro-

gressive reconstruction of multi-dimensional correlated signals in

multi-hop WSNs. We proposed a novel method based on sliding

window mechanism, where the decoder can instantaneously recover

WSN data samples from the collected CS measurements by exploit-

ing the joint spatio-temporal data correlation via Kronecker sparsi-

fying bases. Additionally, by using already reconstructed estimates

as prior information, the joint decoding process can progressively

improve the reconstruction accuracy of the signal ensemble. The

numerical examples illustrated that the proposed method can result

in the same CS recovery performance as the state of the art methods,

yet with notably reduced decoding delay and complexity.
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