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ABSTRACT

In this paper, a framework for dynamic high-dimensional hy-
pothesis testing in wireless sensor networks is presented. The
sensor nodes (SNs) collect and transmit to a fusion center
(FC), in a distributed fashion, compressed measurements of a
time-correlated hypothesis vector. The FC, based on the mea-
surements collected, tracks the hypothesis vector, and feeds
back minimal information about the uncertainty in the current
estimate, which enables adaptation of the SNs’ data collection
and transmission strategy. The policy of the SNs is optimized
with the overall objective of minimizing the detection error
probability, under sensing and transmission cost constraints
incurred by each SN. A Bernoulli approximation on the detec-
tion error is employed, which enables a significant reduction
in the optimization complexity and the design of scalable es-
timators based on sparse approximation recovery algorithms.
Simulation results demonstrate that, for a target 5% detection
error, the adaptive scheme attains 90% and 50% cost savings
with respect to a memoryless scheme which does not exploit
the time-correlation and a non-adaptive one, respectively.

Index Terms— Hypothesis testing, stochastic optimiza-
tion, distributed systems, sensor networks

1. INTRODUCTION
Wireless sensor networks (WSNs) make it possible to monitor
the environment by means of tiny sensors (SNs) distributed
over the field to perform data acquisition, processing and
communication tasks [1]. In this paper, we consider a WSN
where the fusion center (FC) tracks a time-correlated bi-
nary hypothesis vector, by collecting low-dimensional (com-
pressed) noisy measurements from nearby SNs. This situ-
ation arises, for instance, in cognitive radio networks [2],
where secondary users need to track the busy/idle state of
channels to optimize their access. In particular, we devise
a scheme which exploits the time-correlation in the process:
by leveraging the estimate in the previous slot and collecting
new measurements in the present slot, the FC needs only to
estimate a sparse residual uncertainty vector, thus enabling
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the use of sparse approximation and recovery techniques.
However, due to the distributed operation of the SNs, the
amount of measurements collected at the FC is uncertain and
dynamic, thus inducing fluctuations in the detection perfor-
mance. Similar to our previous works [3, 4], we propose a
scheme where the FC feeds back minimal information about
the uncertainty in the current estimate, thus enabling adap-
tation of the SNs’ data collection and transmission strategy.
The data collection and reporting strategy is optimized via dy-
namic programming (DP) [5], so as to minimize the detection
error probability at the FC, under cost constraints incurred
by each SN. In order to tackle the high dimensionality of
the problem, we propose a Bernoulli approximation for the
detection error, which enables a significant reduction in the
state space and in the optimization complexity and the design
of scalable estimators based on sparse approximation recov-
ery algorithms. The optimal policy prescribes that, when the
estimation quality is good (low uncertainty), the SNs remain
idle, in order to preserve energy. On the other hand, when the
estimation quality is poor (high uncertainty), the SNs react
by collecting more measurements, at higher cost.

Feedback schemes in distributed estimation and detection
settings have been proposed in [6–9]. In [6], a two message
feedback architecture for binary hypothesis testing is consid-
ered, in which the second message of each SN is based on full
or partial knowledge of the first message of the other SNs.
In [8, 9], the FC estimates a finite state Markov chain and a
random field, respectively, and, in each slot, feeds back the
posterior state distribution, which is used by the SNs to adapt
their quantizers to minimize the mean squared estimation er-
ror. In these works, fixed rate quantizers are employed, so that
the cost of data acquisition and transmission is not explicitly
accounted for. In contrast, we employ a cross-layer perspec-
tive, i.e., the data reporting strategy is optimized to trade-off
these costs and the detection error probability.

Compressive sensing (CS) [10, 11] enables the recovery
of sparse signals, using only a small number of measure-
ments. In [12], a CS framework to track the support of a time-
correlated Bernoulli-Gaussian signal is presented. Therein, a
centralized scheme is employed. In contrast, in our work, we
employ a distributed setting where each SN collects a com-
pressed measurement of the hypothesis vector; we devise a
feedback scheme which enables adaptation of the SNs. Dis-
tributed CS is studied in [13, 14], for a static signal model.
In [13], a number of SNs measure signals that are each indi-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6494



vidually sparse in some basis and also correlated from SN
to SN. Intra- and inter-signal correlation structures are ex-
ploited to enable signal acquisition via CS. In [15], a Kro-
necker CS framework is developed, which enables the ac-
quisition of multidimensional signals, e.g., spatially and tem-
porally sparse/compressible. In [14], a distributed basis pur-
suit algorithm is designed to minimize the communication be-
tween nodes in the network. Recovery of static binary sparse
signals via CS has been investigated in [16,17], and its appli-
cation to spectrum sensing has been studied in [2].

This paper is organized as follows. In Sec. 2, we present
the system model and the optimization problem. In Sec. 3,
we present the Bernoulli approximation, based on which a
low-complexity feedback scheme is developed in Sec. 4. In
Sec. 5, we present numerical results. Sec. 6 concludes the
paper with some final remarks.

2. SYSTEM MODEL
Let bk be an N -dimensional binary hypothesis vector, taking
value in {0, 1}N , with the following temporal dynamics:

bk+1 = bk ⊕wk, (1)

where k is the time-slot index,⊕ denotes the component-wise
binary XOR operation, wk is an N -dimensional evolution
vector, taking value in {0, 1}N , with i.i.d. Bernoulli com-
ponents with probability P(wk,i = 1) = pW , i.i.d. over time.
Therefore, from (1), each component of bk evolves as a two
state Markov chain, with transition probabilities PB(b1|b0) ,
P(bk+1,i = b1|bk,i = b0), b0, b1 ∈ {0, 1}, where PB(b|b) =
1− pW , ∀b ∈ {0, 1}. At steady state, P(bk,i = 1) = 0.5.1

A set of NS SNs collect noisy measurements of bk as

yn,k = aTn,kbk + zn,k, ∀n = 1, 2, . . . , NS , (2)

where yn,k ∈ R is the compressed measurement collected at
node n in slot k, zn,k ∼ N (0, σ2

R) is Gaussian noise, i.i.d.
over time and across SNs, aTn,k is the measurement vector,
and the superscript ”T” denotes the matrix transpose. For
simplicity, we assume that an,k ∼ N (0, σ2

AIN ), i.i.d. over
time and across SNs, where Ip is the p× p unit matrix. How-
ever, the following analysis can be extended to the more gen-
eral case where an,k is non-Gaussian, non-i.i.d. Note that, for
energy efficiency purposes (data collection and transmission
costs), we assume that only a scalar measurement is acquired
at each SN in each slot (yn,k at SN n), rather than a vector of
measurements. However, this framework can be extended to
multi-dimensional measurements as well.

Examples: The vector bk may represent, for instance, the
busy/idle state of channels in cognitive radio networks [2],
and the measurement vector an,k is thus the result of the
channel attenuation between primary users and cognitive ra-
dios, as well as of filtering operations occurring at each termi-
nal. Alternatively, bk could be the global state of a wireless
network, so that yn,k may represent a compressed view of
the network state at node n, aggregated from nearby nodes,

1The case PB(1|1) 6= PB(0|0) is of interest and will be considered as a
future work.

e.g., using consensus strategies (some entries of an,k may be
equal to zero in this case, depending on the network topol-
ogy; this analysis is left for future research). The estimate
of bk may then be used at the FC to implement centralized
control schemes that adapt to the network state [18].

Each SN, in each slot k, collects the measurement and
reports it to the FC via a single-hop wireless link, with com-
mon probability αk, and remains idle otherwise, to preserve
energy. The set of SNs that report their measurement to the
FC is denoted as Sk, whose cardinality Sk = |Sk| is a bino-
mial random variable with NS trials and mean NSαk, Sk ∼
B(NS , αk). Let rk be the (possibly empty, if Sk = 0) mea-
surement vector collected at the FC in slot k, given by

rk = AT
k bk + zk, (3)

where Ak = [an,k]n∈Sk is the measurement matrix, known
to the FC, and zk = [zn,k]n∈Sk is the column noise vector.
Note that the size of rk is random, due to the probabilistic
transmission decision of each SN. Given the sequence of mea-
surement vectors rk0 = (r0, r1, . . . , rk) and of measurement
matrices Ak

0 = (A0,A1, . . . ,Ak), the FC estimates bk using
the maximum-a-posteriori (MAP) estimator

b̂k = βk(rk0 ,A
k
0) , arg max

bk∈{0,1}N
P(bk|rk0 ,Ak

0). (4)

We denote the detection error probability, given rk0 , Ak
0 , as

PE,k(rk0 ,A
k
0) ,

1

N
E
[∥∥βk(rk0 ,A

k
0)− bk

∥∥2
F

∣∣∣ rk0 ,Ak
0

]
. (5)

The FC, at the beginning of each slot, broadcasts the value
of the common transmission probability αk(rk−10 ,Ak−1

0 ) ∈
[0, 1] employed by the SNs in slot k to make their trans-
mission decision. Its value is based, possibly, on the his-
tory rk−10 , Ak−1

0 . We assume that each SN incurs the
cost of one unit to perform data collection and transmis-
sion to the FC, whereas it incurs no cost in staying idle, so
that the expected cost is αk(rk−10 ,Ak−1

0 ). We define the
time-average detection error and average cost of each SN
over a finite time-horizon of length K, for a given MAP
estimator β = (β0,β1, . . . ,βK−1) and feedback policy
α = (α0, α1, . . . , αK−1), as

P̄KE (β, α) , 1
KEβ,α

[∑K−1
k=0 PE,k(rk0 ,A

k
0)
]
,

C̄KSN (β, α) , 1
KEβ,α

[∑K−1
k=0 αk(rk−10 ,Ak−1

0 )
]
,

(6)

The objective is to determine the optimal (β∗, α∗) that trades
off detection error and cost incurred by each SN, defined as

(β∗, α∗) = arg minPKE (β, α) + λC̄KSN (β, α), (7)

for some λ > 0. Let πk(bk) = P(bk|rk−10 ,Ak−1
0 ), bk ∈

{0, 1}N , be the prior belief of bk at time k, before collecting
the measurements in slot k, and π̂k(bk) = P(bk|rk0 ,Ak

0),
be the posterior belief of bk at time k, after collecting the
measurements in slot k. We have the recursive expressions

π̂k(bk) = P(rk|bk,Ak)πk(bk)∑
b′
k
P(rk|b′k,Ak)πk(b′k)

,

πk+1(bk+1) =
∑

bk
P(bk+1|bk)π̂k(bk),

(8)
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where {rk|bk,Ak} ∼ N (AT
k bk, σ

2
RISk

), and P(bk+1|bk) =∏N
i=1 PB(bk+1,i|bk,i). Then, it can be shown that πk is a suf-

ficient statistic for decision making in slot k, so that (β∗, α∗)
can be restricted to be a function of πk only. Then, from (4),

b̂k = β∗(π̂k) = arg max
bk∈{0,1}N

π̂k(bk) = bk ⊕ ek, (9)

where ek is the detection error, and we have removed the de-
pendence of β∗ on k, since it only depends on π̂k.

The optimal feedback control α∗k(πk) can be determined
recursively using DP [5]. However, this optimization, as well
as the MAP estimator (9), have high complexity. In particular,
(9) requires a search over a high dimensional space, of cardi-
nality 2N . The belief πk needs to be computed via (8), which
involves a marginalization over a high dimensional space. Fi-
nally, DP involves an expectation over bk ∈ {0, 1}N , the
local transmission decisions of the SNs, and rk. These are
all combinatorial problems, whose complexity grows expo-
nentially with NS and N . In the next section, we propose
a Bernoulli approximation for the detection error ek in (9),
which enables a significant complexity reduction.

3. BERNOULLI APPROXIMATION
Using (9) and given the posterior belief of bk in slot k, π̂k,
the distribution of ek is given by

P(ek|π̂k) = π̂k(b̂k ⊕ ek), ∀ek ∈ {0, 1}N . (10)

Herein, due to the intractability of using the true probability
mass function P(ek|π̂k), we approximate the detection error
ek as a Bernoulli vector with i.i.d. entries with probability

PE,k =
∑

ek∈{0,1}N

1

N
‖ek‖0 π̂k(b̂k ⊕ ek), (11)

denoted as the average detection error, where ‖x‖0 is the `0
norm of x. Letting ŵk=ek⊕wk in (9) and (1), we obtain

bk+1 = b̂k ⊕ ek ⊕wk = b̂k ⊕ ŵk. (12)

Then, using the Bernoulli approximation on ek, it follows that
ŵk has Bernoulli i.i.d. entries with probability

PŴ ,k , P(ŵk,i = 1|PE,k) = pW + PE,k(1− 2pW ), (13)

so that, given the estimate b̂k and PŴ ,k, πk+1 can be de-
rived from (12) accordingly. We term PŴ ,k as the uncer-
tainty state, since it captures the amount of uncertainty in
the unobserved bk+1, given the estimate b̂k of bk in slot
k, and we use it in place of the true belief state πk. Given
the vector of measurements collected at the FC in slot k + 1,
rk+1 = AT

k+1bk+1 + zk+1, from Bayes’ rule we obtain

π̂k+1(bk+1)=
P(rk+1|bk+1,Ak+1)P(bk+1|b̂k, PŴ ,k)∑

b′k+1

P(rk+1|b′k+1,Ak+1)P(b′k+1|b̂k, PŴ ,k)
.

Since {rk+1|bk+1,Ak+1} ∼ N (AT
k+1bk+1, σ

2
RISk+1

), us-
ing (12) we thus obtain

π̂k+1(bk+1) ∝ exp

{
− 1

2σ2
R

∥∥rk+1 −AT
k+1bk+1

∥∥2
F

}
× P(ŵk = bk+1 ⊕ b̂k|PŴ ,k). (14)

Equivalently, we can express the above likelihood function
in terms of ŵk. In particular, since ŵk has Bernoulli i.i.d.
entries with probability PŴ ,k and bk+1,i = ŵk,i(1− b̂k,i) +

(1− ŵk,i)b̂k,i, we obtain

π̂k+1(bk+1) ∝ exp

{
− 1

2σ2
R

∥∥∥r̂k+1 − ÂT
k+1ŵk

∥∥∥2
F

}
× (1− PŴ ,k)N−‖ŵk‖0P

‖ŵk‖0
Ŵ ,k

, (15)

where we have defined the residual measurement vector r̂k+1

and the residual measurement matrix Âk+1, given by
r̂k+1 , rk+1−AT

k+1b̂k, Âk+1 , (IN−2diag(b̂k))Ak+1.

Then, using (12) and taking the logarithm of (15), we obtain
β∗k+1(π̂k+1) = arg max

bk+1∈{0,1}N
ln π̂k+1(bk+1) = b̂k ⊕ ŵ∗k, (16)

where ŵ∗k is the MAP estimator of ŵk, defined as

ŵ∗k = arg min
ŵk∈{0,1}N

{∥∥∥r̂k+1 − ÂT
k+1ŵk

∥∥∥2
F
+ µk ‖ŵk‖0

}
, (17)

where we have defined µk , 2σ2
R ln

(
1−PŴ ,k

PŴ ,k

)
. In partic-

ular, ŵ∗k can be determined using sparse approximation al-
gorithms. To this end, we perform a convex relaxation of
(17), by extending the optimization over the convex space
ŵk ∈ [0, 1]N , rather than the discrete set ŵk ∈ {0, 1}N ,
and by relaxing the `0 regularization term µk ‖ŵk‖0 with the
`1 term µk ‖ŵk‖1 = µk

∑
i |ŵk,i|, so that (17) becomes a

quadratic programming problem, whose solution is denoted
as w̃∗k ∈ [0, 1]N . After obtaining w̃∗k, ŵ∗k ∈ {0, 1}N can be
finally approximated using a minimum distance criterion.

4. APPROXIMATE FEEDBACK CONTROL α

We now determine an approximate feedback control scheme
αk(PŴ ,k−1), which leverages the Bernoulli approximation
proposed in Sec. 3. Note that αk(PŴ ,k−1) is now a function
of the uncertainty state PŴ ,k−1, rather than the prior belief
πk, due to the approximation employed. Let ρ(Sk, PŴ ,k−1)
be the average detection error probability, when ŵk−1 in
(12) has i.i.d. components with probability PŴ ,k−1 and
Sk measurements are received at the FC. In particular,
ρ(Sk, PŴ ,k−1) is obtained by marginalizing with respect
to both the observation vector rk and the measurement ma-
trix Ak, whose entries are generated i.i.d. from N (0, σ2

A),
for dimensionality reduction purposes. This approximation
inherently assumes that Sk and PŴ ,k−1 are the most impor-
tant factors which determine the detection performance of the
MAP estimator, whereas the actual realizations of rk and Ak

are not as influential. We can thus approximate the average
detection error probability and cost as

P̂KE (α) ' 1
KEα

[∑K−1
k=0 ρ(Sk, PŴ ,k−1)

]
,

ĈKSN (α) ' 1
KEα

[∑K−1
k=0 αk(PŴ ,k−1)

]
,

(18)
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Fig. 1. Average detection error vs average transmission cost
for each SN.
where, using (13), the uncertainty state is updated as

PŴ ,k=φ(Sk;PŴ ,k−1),pW +ρ(Sk,PŴ ,k−1)(1−2pW), (19)

and Sk ∼ B(NS , αk(PŴ ,k−1)). The optimal feedback con-
trol policy can then be derived using the DP algorithm, by
solving recursively, for k = K − 1,K − 2, . . . , 0,

Ĉk,Kα∗ (PŴ ,k−1) = max
αk∈[0,1]

NS∑
s=0

P(Sk = s|αk)ρ(s, PŴ ,k−1)

+λαk +

NS∑
s=0

P(Sk = s|αk)Ĉk+1,K
α∗ (φ(s;PŴ ,k−1)), (20)

with initial condition ĈK,Kα∗ (PŴ ,K) = 0. The optimizer
above is the optimal policy α∗k(PŴ ,k−1).

Note that, leveraging the proposed approximation, we
have marginalized the dynamics of the system with respect to
the specific realization of the measurement process rK−10

and measurement matrices AK−1
0 , making the problem

tractable. The state is thus captured by the uncertainty state
PŴ ,k−1 ∈ [0, 1], rather than the belief πk, and its evolution
is only a function of the (random) number of measurements
collected at the FC, Sk, via the state update equation (19). A
significant reduction in complexity is thus achieved.

5. NUMERICAL RESULTS
In this section, we present numerical results. The parameters
are: NS = 10, N = 10, pW = 0.01, σ2

A = 1 and σ2
R = 0.1.

We consider the following schemes:
• Adaptive scheme (AS): solution of the DP algorithm (20);

the transmission probability of each SN in each slot is
adapted to the uncertainty state PŴ ,k−1;
• Non-adaptive scheme (NAS): each SN transmits with fixed

probability in each slot, independently of PŴ ,k−1;
• Memoryless scheme (MS): the FC does not exploit the tem-

poral correlation in the process bk; the SNs transmit with
a fixed probability in each slot.

The MAP estimator (17) is solved via exhaustive search (op-
timal decoder), so that the ultimate performance bounds are
characterized. However, sparse approximation recovery algo-
rithms can be employed, as explained in Sec. 3, providing
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Fig. 2. Transmission probability as a function of the uncer-
tainty state, for the adaptive and non-adaptive schemes.

no additional insights. The error curve ρ(Sk, PŴ ,k−1) is ob-
tained via Monte-Carlo simulation. In Fig. 1, we plot the
average detection error probability as a function of the cost
incurred by each SN, obtained via simulation over a time-
horizon of length Ksim = 1000. We notice that AS and NAS
attain a significant performance improvement with respect to
MS. AS further improves NAS in the detection error versus
cost trade-off. For instance, for a target 5% detection error,
AS attains 90% and 50% cost savings with respect to MS and
NAS, respectively. In fact, as can be seen in Fig. 2, AS allows
the SNs to remain idle and save energy when the uncertainty
state is small, i.e., the detection accuracy is high at the FC,
whereas the SNs report more aggressively when the detection
accuracy at the FC is poor, in order to improve it. Note that, at
initialization (slot k = 0), we have PŴ ,0 = 0.5, and therefore
the FC is highly uncertain about b0. This initial uncertainty
is corrected by activating more SNs (transmission probability
∼ 0.8), so that a large number of measurements is collected
at the FC, providing a good initial estimate of b0.

6. CONCLUSIONS
In this paper, we have presented a framework for dynamic
high-dimensional hypothesis testing in WSNs, based on com-
pressed measurements collected at the FC from nearby SNs.
The FC feeds back minimal information about the uncertainty
in the current estimate, which enables adaptation of the SNs’
data collection and transmission strategy. The policy of the
SNs is optimized, with the overall objective of minimizing the
detection error probability, under sensing and transmission
cost constraints incurred by each SN. In order to tackle the
high dimensionality of the problem, we employ a Bernoulli
approximation for the detection error, which enables a sig-
nificant reduction in the state space and in the optimization
complexity and the design of scalable estimators based on
sparse approximation recovery algorithms. Simulation results
demonstrate significant cost savings by performing adaptation
(50%, for a target 5% detection error) and by exploiting the
temporal correlation in the process (90% cost saving).
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