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ABSTRACT
Techniques based on non-negative matrix factorization (NMF) have
been successfully used to decompose a spectrogram of a music
recording into a dictionary of templates and activations. While ad-
vanced NMF variants often yield robust signal models, there are
usually some inaccuracies in the factorization since the underlying
methods are not prepared for phase cancellations that occur when
sounds with similar frequency are mixed. In this paper, we present
a novel method that takes phase cancellations into account to refine
dictionaries learned by NMF-based methods. Our approach exploits
the fact that advanced NMF methods are often robust enough to
provide information about how sound sources interact in a spec-
trogram, where they overlap, and thus where phase cancellations
could occur. Using this information, the distances used in NMF
are weighted entry-wise to attenuate the influence of regions with
phase cancellations. Experiments on full-length, polyphonic piano
recordings indicate that our method can be successfully used to
refine NMF-based dictionaries.

Index Terms— Weighted Distances, NMF, Phase Cancellation,
Source Separation.

1. INTRODUCTION

Non-negative matrix factorization (NMF) and its variants have been
widely adopted in music signal processing, with applications in mu-
sic transcription, source separation and remixing, or pre-processing
in music information retrieval [1–4]. A central idea in NMF is to
learn a dictionary of spectral templates, which can be used as build-
ing blocks to approximate a time-frequency representation of a given
signal [1]. In a musical context, each template typically reflects the
spectral envelope associated with a single musical pitch played on
an specific instrument. By reconstructing a signal based on these
learned dictionary elements, NMF is often used to explain the struc-
ture of a signal and to disclose its constituent parts.

To increase the robustness of the dictionary learning process,
one makes simplifying assumptions in NMF. For example, an im-
plicit assumption in NMF is that the time-frequency representation
of a mix of sound sources is equal to the sum of the individual time-
frequency representations of the sources [5]. While this is true for
complex spectrograms, it is only approximately correct for mag-
nitude or power spectrograms, which are commonly employed in
NMF. This way, the NMF model does not account for so called phase
cancellations: the destructive interference between two sounds with
similar frequency during the mixing process. In particular, at posi-
tions in a magnitude spectrogram where phase cancellations occur,
less energy is available than expected without a cancellation. As
the NMF model does not account for such effects, cancellations can
have a negative influence on the NMF learning process.

Various extensions to NMF have been proposed which increase
the robustness of the dictionary learning process in general, and

which often also mitigate negative effects resulting from phase can-
cellations. For example, enforcing a specific structure in the tem-
plates imposes constraints over how sounds can be represented in
NMF [4], which typically stabilizes the learning process. Further-
more, sparsity constraints [6, 7] can be used to penalize the use of a
high number of templates to represent sounds, which typically leads
to more meaningful templates and thus also stabilizes the learning
process. However, whether such extensions have a significant effect
on the dictionary learning process often depends on the particular
recording being processed.

The effect of phase cancellations on the learning process has
also been directly addressed by some NMF extensions. For exam-
ple, one can show that if a given spectrogram can be assumed to be
the result of a random process, and if this random process has cer-
tain properties (e.g. entries in the phase field are i.i.d. random vari-
ables), then using a modified dictionary learning process (Itakura-
Saito (IS)-NMF) on a power spectrogram leads to a dictionary which
is invariant against phase cancellations in the signal [5, 8]. While
this approach provides the means to interpret NMF as a probabilistic
process, some of these assumptions are often not met using real-
world recordings [9]. Furthermore, a variant referred to as complex-
NMF was introduced, which operates on complex-valued spectro-
grams [10]. While the relaxation of the strict non-negativity con-
straints used in standard NMF leads to more freedom in the signal
model, it can also lower the robustness of the learning process in
some cases. High-resolution (HR)-NMF was recently proposed as
an extension to IS-NMF, which temporally couples the random vari-
ables in IS-NMF using an auto-regressive model [11]. This way,
for each frequency band, energy patterns typical for a source can be
captured (such as beating in piano sounds) and can be used to model
overlapping frequency components with high accuracy, without ex-
plicitly modeling the phase field.

In this paper, we present a novel method that refines learned dic-
tionaries by taking possible phase cancellations into account during
a re-training step. Instead of modeling the phase field and phase
cancellations directly, we exploit that NMF (or one of its variants)
is often robust enough to obtain an initial model of the signal that
can be used to indicate positions in the spectrogram where phase
cancellations might have occurred. More precisely, after using an
initial NMF, we look for positions in a spectrogram, where energy
is explained by more than one template. Such positions often indi-
cate where sources might overlap, and hence where phase cancella-
tion could have occurred. To refine the dictionary, we then attenuate
the influence of these positions in the spectrogram on the learning
process. To this end, we create a matrix that contains a weight for
each entry in the spectrogram and incorporate this matrix into typ-
ical spectral distance measures used in NMF, which enables us to
control how much influence on the distance each entry should have.
Finally, the NMF dictionary is refined during a retraining step using
new update rules that take the modified distance measures into ac-
count. Since this general strategy does not rely on a specific NMF
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Fig. 1. Example of phase cancellations: (a) Magnitude spectrogram
of the recording. (b)/(c) Dictionary and activation matrix learned via
classic NMF. (d)/(e) Weighting matrices W̃ andW . (f)/(g) Refined
dictionary and activation matrix learned via proposed method.

variant, it can be combined with various NMF extensions to increase
the robustness of the learning process.

In the following, we briefly introduce NMF discussing examples
of shortcomings in the dictionary learning process related to phase
cancellations. Then, we describe our method based on weighted
spectral distances to refine NMF-based dictionaries and illustrate its
effects on the learning process. After presenting the results of an
experiment using full-length piano recordings, we conclude with a
prospect on future extensions.

2. NON-NEGATIVE MATRIX FACTORIZATION

In classic non-negative matrix factorization, one approximates a
spectral representation of a given recording by a product of two non-
negative matrices. More exactly, given a magnitude spectrogram
V ∈ RM×N

+ of a music recording, NMF seeks to find non-negative
matrices T ∈ RM×K

+ and A ∈ RK×N
+ such that V ≈ T · A. In

this context, the matrix T is referred to as dictionary, its columns
are referred to as templates and the rows of A as the corresponding
activations. To compute such a factorization, one seeks to minimize
a distance measure D(V, T · A) with respect to T and A. In the
following, we use the modified Kullback-Leibler (KL) divergence,
which is for V, Ṽ ∈ RM×N

+ defined as:

D(V, Ṽ ) :=
∑
m,n

(
Vm,n ln

Vm,n

Ṽm,n

− Vm,n + Ṽm,n

)
.

To find a local minimum of D with respect to T and A, Lee and
Seung proposed multiplicative update rules [12]:

T ← T �
( V
T ·A ) ·A>

J ·A> and A← A�
T> · ( V

T ·A )

T> · J ,

where the · operator denotes the usual matrix product, the � op-
erator denotes the Hadamard product (point-wise multiplication),
J ∈ RM×N denotes the matrix of ones, and the division is un-
derstood point-wise. After initializing T and A with non-negative
random values, these rules monotonically decrease D(V, T ·A).

To study the effect of phase cancellations on the NMF learning
process, we consider in the following a simple synthetic example
shown in Fig. 1(a). For this recording, we synthesized three har-
monic sounds, having a fundamental frequency of 250 Hz, 500 Hz,
and 750 Hz, respectively. Each one second long sound is played
once at the beginning of the recording, compare the first three sec-
onds in Fig. 1(a). Between seconds 3 and 4 we mixed the 250 Hz and
500 Hz sounds, and between seconds 4 and 5 we mixed the 250 Hz
and 750 Hz sounds. Since the fundamental frequencies are integer
multiples of 250, some of the partials overlap in the mixing section,
see green circles in Fig. 1(a). Here, we can observe constructive in-
terference (green circle around 500 Hz between seconds 3 and 4), as
well as destructive interference (the other two green circles).

We now investigate how NMF behaves on this recording. To
this end, we set the number of templates K=3 and apply NMF as
described above with 100 update iterations1. The result is illustrated
in Fig. 1(b) and Fig. 1(c), which show the learned dictionary T and
the corresponding activation A, respectively. In this example, NMF
identifies the three harmonic sounds approximately correctly, see
Fig. 1(b). However, there are some inaccuracies. Looking at the
three original sounds shown in Fig. 1(a), we see that all four par-
tials have the same intensity in each sound. In Fig. 1(b), however,
the second partial in the second template, and the first partial in the
third template are weaker compared to the others. Furthermore, the
loudness of individual sounds was not changed during the mixing
process, but still the lower activity values in Fig. 1(c) (between sec-
onds 3 and 5) incorrectly indicate that the volume of the individual
sounds in the mixing section is much lower compared to the origi-
nal sounds. In both cases, this behavior is caused by the unexpected
local energy loss resulting from the two phase cancellations.

3. WEIGHTED-DISTANCE NMF

Modeling the phase field and the cancellations resulting from it can
be very complex, and would introduce additional degrees of freedom
in the signal model which could lead to numerical instabilities in
the learning process. Instead, we exploit the fact that NMF (and in
particular its more advanced variants) often yield quite robust signal
models. In particular, if the initial signal model indeed explains the

1In total, we used 20 different random initializations for NMF and kept
the factorization result having the lowest KL-divergence.
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inner structure of a recording approximately correctly, we can use it
to estimate where in a spectrogram sounds might be overlapping and
hence where phase cancellations are likely to occur. Then we can
pay less attention to these entries when we learn (or re-learn) our
dictionary.

To this end, we now define a weighting matrixW ∈ [0, 1]M×N ,
which captures how much attention each spectrogram entry should
receive in the distance measure D. We start with the definition of a
helper matrix W̃ ∈ [0, 1]M×N :

W̃m,n := max
k∈[1:K]

max

[
(T k ·Ak)m,n

(T ·A)m,n
· 2− 1, ε

]
where T k denotes the k-th column of T and Ak the k-th row of A,
and ε ∈ R+ is a small positive number. W̃m,n is equal to 1 if the
entire energy in the model at the (m,n)-th position (T · A)m,n is
explained by a single template (T k ·Ak)m,n, and close to zero if the
energy is equally explained by two or more templates, see Fig. 1(d)
for an example. In particular, W̃m,n ≈ 0 if two or more sources are
overlapping according to the model, and W̃m,n ≈ 1 if no overlap
was detected. Next, we integrate W̃ into our distance measure D
to reduce the influence of spectrogram entries with potential phase
cancellations:

DW̃(V,W ) :=
∑
m,n

W̃m,n ·
(
Vm,n ln

Vm,n

Wm,n
− Vm,n +Wm,n

)
.

However, integrating W̃ as defined above would have some draw-
backs. Most importantly, ignoring entries in the spectrogram essen-
tially creates wildcards where the model behaviour is not signifi-
cantly penalized anymore. Using W̃ , however, often leads to a high
number of wildcards (Fig. 1(d)), which results in additional degrees
of freedom in the model and lowers the overall robustness of the
NMF learning process. To limit the number of entries being ignored
we incorporate two additional requirements into W̃:

Wm,n :=


(W̃m,n)

C , (T ·A)m,n − Vm,n ≥ b1
∧Vm,n ≥ b2

1, otherwise,

where b1, b2, C ∈ R+. The first requirements means that the model
expects more energy in the spectrogram than actually exists, which
is a basic requirement for a phase cancellation. The second require-
ment means that only entries having a minimum amount of energy
can be ignored. Here, the idea is that, in practice, a phase cancella-
tion is not perfect but instead there is almost always some residual
energy (b2) left. If there is almost no energy at all, there proba-
bly was not a phase cancellation. Furthermore, a parameter C is
introduced to non-linearly drive small entries in W̃ more towards
zero. Fig. 1(e) shows an example forW , with b1 = 0, b2 =[-40dB
below maxm,n Vm,n], and C = 1.5. As we can see, the matrix
captures the three positions, where phase cancellations occur, quite
accurately, except for some spurious entries.

To actually employ W to refine the dictionary learned using
classic NMF, we need NMF update rules that minimize the distance
DW(V, T · A). Such update rules have been introduced by Blondel
et al. in [13].

T ← T �
(W�V

T ·A ) ·A>

W ·A> and A← A�
T> · (W�V

T ·A )

T> · W .

An example is given in Fig. 1(f) and Fig. 1(g), which show the
refined dictionary T and activations A for the example shown in
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Fig. 2. Piano Example: (a) Spectrogram of the recording. (b)/(c)
Dictionary and activation matrix learned via classic NMF. (d)/(e) Re-
fined dictionary and activation matrix learned via proposed method.

Fig. 1(a), respectively. All partials in the refined templates as well as
all refined activations correctly have the same intensity.

In a second example, we used non-synthetic sounds taken from
the RWC database [14]. We took isolated note recordings for a C4
and a G4 played on a piano and created a recording, where both notes
are first played separately and then mixed together, see Fig. 2(a). The
green circle highlights a region in the spectrogram where energy is
lost due to a partial phase cancellation. The result of applying clas-
sic NMF on this recording is illustrated in Fig. 2(b) and Fig. 2(c),
where the learned dictionary and activations are shown. We can ob-
serve, that the third partial in the first template has slightly less en-
ergy than it should have, see green circle in Fig. 2(b). More obvious
though are the effects of the phase cancellation on the activations:
While the isolated sounds were mixed together without changing
their volume, the activations in the mix segment (green rectangle
in Fig. 2(c)) are much lower compared to the activations for the iso-
lated sounds and incorrectly indicate a change in loudness. However,
applying our weighted-distance NMF, the isolated sound activations
(between seconds 0 and 2 in Fig. 2(e)) are almost perfectly repeated
in the segment containing the mixed sounds (between seconds 2 and
3 in Fig. 2(e)). This way, the refined activations reveal that the two
sounds were indeed mixed without changing their volume. Also the
third partial in the first template contains now slightly more energy.
Overall, using our DW enables NMF to focus on those parts of the
spectrogram that are likely to be unaffected by phase cancellations
and thus helps to refine learned dictionaries and activations.

With a final example, we illustrate a (positive) side-effect of our
proposed method, which could be observed during our experiments.
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In particular, our method relies on the heuristic that one sound is rep-
resented by a single template to detect locations of potential phase
cancellations. While this is indeed enforced in some advanced NMF
variants, there is no such constraint in general. In particular, in (clas-
sic) NMF one often finds the situation that a sounds that is not over-
lapped by other sounds (and thus phase cancellation does not occur)
is represented by several templates. As an example, we consider in
Fig. 3(a) a recording of a C5 and a G5 played on a flute. The C5 is
repeated four times and after that the G5 is played once. Applying
classic NMF with K=2 yields a factorization as shown in Fig. 3(b)
and Fig. 3(c). Since most energy in the spectrogram is associated
with the C5 note, the G5 note is not captured in the templates but
instead both templates are used to (over-)represent the C5. Applying
our proposed method, however, this behavior changes. As shown in
Fig. 3(d) and Fig. 3(e), now one template is used for each note and
the G5 is correctly modeled. In particular, since the C5 is represented
by two templates our weighted distance measure attenuates the in-
fluence of some parts of the C5 notes on the distance measure such
that the G5 energy becomes important enough to be represented by
a template. However, this side-effect could not always be observed
and behaved rather fragile. In particular, adding another repetition
of the C5 to the recording shown in Fig. 3(a), and the dictionary
learned using our proposed method is again almost identical to the
one learned using classic NMF.

4. EXPERIMENTS

To evaluate the proposed method on more complex recordings, we
conducted a simple source separation experiment. To this end, we
used ten piano MIDI files obtained from the Mutopia website [15].
For our experiment, we derived two new MIDI files for each piece
by partitioning the 88 keys on a piano into two subsets: one file con-
tained only note events with a MIDI pitch in P1 := {21, . . . , 59}
(corresponding to A0 to B3), and the other one contained only note
events with a MIDI pitch in P2 := {60, . . . , 108} (corresponding to
C4 to C8). We then synthesized the three MIDI files for each piece
using the Timidity wavetable synthesizer. The task consists of split-
ting the audio recording synthesized using all MIDI note events into
two recordings containing only the sounds corresponding to the sets
P1 and P2, respectively. The two recordings that were synthesized
using only the MIDI pitches in P1 and P2, respectively, were used
as ground truth separation results.

For our experiment, we used the NMF variant described in [16,
17]. In this approach, the dictionary is not randomly initialized. In-
stead, each template is associated with a single MIDI pitch p. Then,
a harmonic structure is enforced for each template by setting those
entries to zero that are not in a neighborhood of an integer multi-
ple of f(p), where the function f(p) = 12(p−69)/12 · 440 assigns
a MIDI pitch to its corresponding frequency in Hertz. Using multi-
plicative update rules guarantees that these constraints remain valid
during the subsequent learning process. In other words, zero-valued
entries between the expected partials enforce the intended harmonic
structure during the NMF learning process.

We used 88 templates, associated them with the MIDI pitches
{21, . . . , 108} and initialized them according to [16]. After the
NMF learning process, we derived two new activation matrices: for
AP1 , we kept only those activations from A that were associated
with a MIDI pitch in P1, and set the remaining rows to zero. The
matrix AP2 was derived accordingly. Using these two new activa-
tion matrices, we split the original spectrogram into two parts:

VP1 := V � T ·AP1

T ·A and VP2 := V � T ·AP2

T ·A ,
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Fig. 3. Flute Example: (a) Spectrogram of the recording. (b)/(c)
Dictionary and activation matrix learned via classic NMF. (d)/(e) Re-
fined dictionary and activation matrix learned via proposed method.

where the division is understood point-wise. Finally, we used a spec-
trogram inversion method to create audio recordings corresponding
to VP1 and VP2 [18].

Using the BBS-eval toolkit [19], we computed Signal-to-
Distortion Ratio (SDR) values to quantify the quality of the sep-
aration results, comparing them to the recordings that we synthe-
sized using only P1 and P2. On average, using classic NMF, this
simple approach achieved an SDR of +2.8dB, while applying our
proposed weighted NMF led to an SDR of +3.1dB. The slight in-
crease in SDR demonstrates that our method is indeed useful also
for complex polyphonic recordings. However, the overall separation
performance remained rather small because the capabilities of our
proposed method are limited by the robustness of the underlying
NMF variant, which was not state-of-the-art in this experiment.

5. CONCLUSIONS

We presented a method for refining dictionaries learned via NMF-
based methods. Our method exploits that (advanced) NMF methods
typically yield robust signal models, which can be used to estimate
where in a spectrogram phase cancellations could have occurred. By
attenuating the influence of these positions in the spectrogram on
the distance measures used in NMF, the method allows for refining
dictionaries learned via NMF. In the future, we plan to further extend
the idea of using weighted distances to guide the learning process in
NMF-based methods.
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