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ABSTRACT

In this paper, we present a robust approach to estimate communica-

tions channel in OFDM systems exploiting the sparsity of the chan-

nel impulse response (CIR) commonly found in multi-path channels.

The CIR is found as the solution of a regularized optimization prob-

lem where we minimize the least absolute deviation of a residual

signal while, at the same time, encourage sparsity in the solution by

an ℓ0 pseudo-norm regularization term. The proposed approach re-

duces to estimate iteratively each tap of the CIR using a complex

median based operator followed by a relevance test that forces spar-

sity in the solution. A blanking filter at the front end of the receiver

is used to further mitigate the impact of the impulsive noise. Ex-

tensive simulations show that the proposed approach performs better

than conventional approaches for AWGN channels and for situations

where the additive noise follows a heavier-than-Gaussian tail distri-

bution.

Index Terms— Sparse Channel Estimation, Impulsive Noise,

Complex Weighted Median, OFDM, Robust Estimation.

1. INTRODUCTION

In recent years, OFDM has been chosen as the preferable modula-

tion technique adopted for communications standards in 4G mobile

communications, wireless networks, terrestrial digital TV, among

others. One of the benefits of using OFDM modulation is that the

equalization process can be made using a single-tap frequency do-

main equalizer where the transmitted symbol at the k-th subcarrier

is estimated by just taking the ratio of the received signal and the

channel frequency response at that particular subcarrier. To exploit

this advantage, it is required an accurate knowledge of the OFDM

communication channel to achieve the demodulation process with a

minimal error, in particular for frequency selective channels. Sev-

eral methods have been proposed to perform OFDM channel esti-

mation (CE) [1, 2, 3, 4, 5]. An approach that is of particular interest

is the data-aided framework, where pilot signals are uniformly in-

terleaved among information symbols and used to estimate channel

frequency response at pilot subcarriers. Estimation methods based

on least square (LS) and Minimum Mean Square Error (MMSE) [1]

are commonly used to estimate the channel at pilot frequencies. All

these methods, however, assume that the noise is AWGN, in which

case a quadratic loss function is considered optimal under the max-

imum likelihood (ML) principle to address the CE problem. There

exist several communications channels [6] where the noise is bet-

ter modeled by heavier-than-Gaussian tail distributions, i.e. impul-

sive kind of noise, on those cases the above-mentioned approaches

have poor performance. Furthermore, conventional CE approaches

are not able to exploit the inherent sparsity of the transmission chan-

nel [3, 7]. These call for the development of robust CE algorithms for
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OFDM transmission system that at the same time exploit the sparsity

of CIR.

In this paper, we propose a robust approach for OFDM CE that,

on one hand, exploits the sparsity observed in multi-path CIR [3, 7]

and, on the other, adds the desired robustness to impulsive noise in

the estimation stage. Firstly, we mitigate the impulsive noise effects

by a blanking filter at the front end that cancels out strong impulse

noise forcing it to zero [8, 9]. Next, we address the channel es-

timation problem in the framework of a linear regression problem

with a sparse parameter vector [10] where the CIR plays the role

of a sparse vector, the prefiltered-received signal at pilot subcarrier

as the observed data and a Fourier submatrix as the regressors. This

linear regression problem is solved by minimizing a robust loss func-

tion subject to the constraint that the CIR is sparse. More precisely,

our approach adds robustness to the estimation stage using an abso-

lute value function (l1-norm) as a loss term and, to force sparsity in

the solution, a regularization term based on the l0 pseudo-norm is

incorporated in the optimization problem. This optimization prob-

lem is solved by using a coordinate descend framework together

with a continuation approach for the selection of the regularization

parameter[11], reducing the solution to an iterative algorithm that

estimates each tap of the channel impulse response using complex

median operator followed by a hard threshold operator that decides

whether the tap is relevant or not.

The proposed approach is extensively tested under different con-

ditions for impulsiveness of the channel contamination, number of

pilot signals, number of subcarriers and number of relevant taps of

the channel. Furthermore, the performance achieved by the proposed

approach is compared to those yielded by conventional channel es-

timation approaches like, LS and MMSE, and to that yielded by a

ℓ1-regularized LS based CE approach[2, 3, 4].

2. OFDM SYSTEM MODEL

Let X(n) ∈ CN be a vector denoting the n-th OFDM symbol com-

prising of M pilot signals at location Ω = {p1, p2, . . . , pM} and

N−M complex information symbols located at Ωc where Ω∪Ωc =
{0, 1, . . . , N − 1}, with Ω ∩ Ωc = ∅. Once the OFDM sym-

bol is formed, it is mapped to the time domain using Inverse Dis-

crete Fourier Transform (IDFT), i.e. x(n) = FN
−1 X(n), where

FN
−1 ∈ CN×N is the N-point DFT matrix. In the time domain, a

cyclic prefix (CP) defined as x
(n)
cp = [x(n)(N − L), x(n)(N − L+

1), . . . , x(n)(N − 1)]T is appended at the front of x(n), where L is

the length of the CP which is assumed to be longer than the channel

delay spread avoiding thus Inter Symbol Interference (ISI) between

adjacent OFDM symbols.

The extended time domain symbol x
(n)
t = [x

(n)T

cp ,x(n)T ]T is

then transmitted through a multi-path communications channel mod-

eled as h[k] =
∑J

ℓ=1 hℓδ[k−dℓ] where J is the number of paths, hℓ

is the ℓ-th complex path gain and dℓ is the corresponding path delay.

We adopt a sparse channel model where the nonzero gain path hℓ fol-
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lows a zero-mean complex random process and the path delays, dℓ,
are assumed to be sampled-spaced. Both path delays and path gains

are considered fixed during the transmission of the n-th ODFM sym-

bol but they may vary for subsequent OFDM symbols. Thus, fast

fadding channel is assumed. In vector form, h[k] can be represented

as h ∈ CJ , with each entry equals to hℓ for ℓ = 1, . . . , J . Assum-

ing perfect synchronism between transmitter and receiver and since

J ≤ L, i.e. ISI free, the received signal for the n-th transmitted

OFDM symbol is given by y
(n)
t = x

(n)
t ∗ h(n) + w(n), where ∗

denotes the convolution operator, y
(n)
t is the received signal in the

time domain with length N + L + J − 1, w(n) ∈ CN+L+J−1 de-

notes the time domain noise and h(n) denotes the J-length channel

impulse response. Once the signal y
(n)
t is received, the L-length

CP is removed and an N -point FFT is applied on the following N
samples of the resultant signal leading to a frequency domain repre-

sentation of the received OFDM symbol, denoted as Y(n). Having

the received signal in the frequency domain, data symbols and pilot

signals are separated to perform CE using the information contained

at pilot subcarriers. After that, the transmitted symbol at the k-th

subcarrier is estimated through a one-tap frequency domain equal-

izer, i.e. X̂(k)(n) = Y (k)(n)/Ĥ(k)(n) for k ∈ Ωc where Ĥ(k) is

the estimated channel frequency response.

2.1. OFDM channel estimation

The simplest approach to achieve CE is to estimate the channel fre-

quency response at pilot subcarrier as Ĥ ls(k) = Y (k)/X(k) for

k ∈ Ω where X(k) is the pilot symbol known at the receiver. From

this channel information at pilot subcarriers, channel at data subcar-

riers can be estimated by linear interpolation or second order inter-

polation [1]. This CE approach at pilot subcarriers is known as Least

Square (LS) CE. A second approach commonly used for OFDM CE

is the one based on minimum mean square error (MMSE) which as-

sumes that the CIR h is Gaussian and uncorrelated with the additive

channel noise w [1].

Note that neither LS nor MMSE CE takes into account the spar-

sity characteristics of the CIR [3, 7]. To exploit the sparsity structure

of the channel, it is convenient to restate the CE problem under the

framework of a linear regression problem with a sparse vector pa-

rameter. To this end, note that the received signal at pilot subcarriers

can be stated as:

YΩ = Xp[FN ]Ω,Lh+WΩ (1)

where h is a L-dimensional vector assuming, for simplicity, that the

channel length is equal to the CP length, i.e. L = J . [FN ]Ω,L

is a M × L matrix built by keeping the rows of FN at pilot posi-

tions and retaining the first L columns of FN [3]. Finally, Xp =
diag[Xp1 , Xp2 . . . XpM ].

Note that (1) can be thought of as an inverse problem where we

are interested in finding the sparse vector h from the received signal

at pilot tones such that the residual error ǫ = YΩ − Xp[FN ]Ω,Lh

becomes as small as possible under certain loss function.

Following this line of thought, several methods have been

recently proposed [2] that minimize a quadratic loss function (ℓ2-

norm) of the residual error ǫ while promoting, at the same time,

sparsity in the solution by an ℓ1-norm.

Like LS and MMSE CE approaches, these ℓ1-LS based CE

approaches are suitable when the channel contamination follows

a Gaussian model. Although optimal under the ML criterion for

this kind of noise, the ℓ2-norm based approaches tend to be very
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Fig. 1. Tails of the distribution at the output of the blanking filter for

various values of the nonlinearity parameter λ0.

sensitive to impulsive noise and their performances, in general, de-

grade notably for noisy environments that are better characterized

by an heavier-than-Gaussian-tail distributions. Furthermore, using

ℓ1-norm as sparsity-inducing term might not be optimal since, as

an approximation to the pseudo-norm ℓ0, it may not induce enough

sparsity in the solution.

3. ROBUST CHANNEL ESTIMATION APPROACH

To overcome the above mentioned drawbacks, we propose an ap-

proach to estimate OFDM channel coefficients that, on one hand,

adds robustness against impulsive noise to the CE stage and, on the

other hand, induces the required sparsity in the solution.

Let’s consider that the underlying contamination, w, of our

OFDM transmission system is modeled by a Symmetric Alpha-

Stable (SαS) distribution [12] defined by its characteristic function

Φ(ω) = e−γ|ω|α where α ∈ (0, 2] indicates the thickness of the tails

of the distribution ranging from extremely impulsive noise (α → 0),
to not impulsive at all for α = 2 Gaussian distributed noise. γ is

the dispersion parameter of the SαS distribution. Since the received

signal is mapped to the frequency domain, one may be tempted

to think that due to the mapping operation of the OFDM system

that spreads the energy of each impulse evenly across all the sub-

carrier of the transmitted symbol, the impulsive noise do not harm

at all the receiver performance. However, when there are enough

impulses during the transmission of the same OFDM symbol their

effects combine linearly in each subcarrier leading to a performance

degradation in the channel estimation stages. Furthermore, the gen-

eralized central limit theorem [12] states that the noise at the output

of the DFT operator becomes α-stable, and, hence, with heavier-

than-Gaussian tail distribution, the ℓ2-norm based postprocessing is

no longer optimum.

3.1. Impulsive Noise Mitigation

Several techniques for impulsive noise mitigation in OFDM system

have been proposed in the literature [8]. An approach that is particu-

larly appealing is to pre-filter the received signal by a blanking filter

placed at the receiver front end. This pre-filter operation identifies

the large received samples and reduce their effect by forcing them to

zero. This memoryless nonlinearity operation is applied on the real

part and imaginary part of the received signal leading to an output

signal given by:

zF (i) =







F (y(i)) if |F (y(i))| ≤ λ0

0 otherwise

(2)
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where F ∈ {ℜ(·), ℑ(·)} denotes, either the real or the imaginary

part of the argument and λ0 is a threshold parameter that depends on

the SNR and the impulsiveness of the communication channel.

The output signals of these nonlinear operators are then com-

bined as z = zR + jzI and feed to the CP removing block and,

subsequently, to DFT block to obtain Z. Although this filtering op-

eration reduces the undesired effect of the impulse noise, it modifies

the statistical of the contamination in the frequency domain tending

to a distribution with heavier-than-Gaussian tail distribution as λ0

increases. To see this, in Fig. 1, it is shown the tails of the dis-

tribution of the real part of Z for the k-th subcarrier found by N
successive convolutions of the pdf of Z (fZ(x)) for several values

of λ0. For comparative purpose, we also show the tails of Gaussian,

Laplacian and Cauchy distributions with unitary dispersion and zero

location parameter. Note that, as expected the tail heaviness of the

distribution tends to increase as the threshold parameter becomes

higher. Furthermore, fZ(x) has heavier tails than Gaussian’s and

going closer to the Laplacian’s ones leading us to think that the use

of the absolute value loss function (ρ(x) = |x|) for channel estima-

tion may be a good choice.

3.2. Robust channel estimation by ℓ0-LAD

Based on this observation, we propose to estimate the channel im-

pulsive response as a solution of an ℓ0-regularized least absolute de-

viation (ℓ0-LAD) optimization problem, this is

ĥ = argmin
h

‖Xp
−1

ZΩ −Ah‖ℓ1 + τ‖h‖ℓ0 (3)

where ZΩ is the DFT of z at pilot subcarriers and A = [FN ]Ω,L.

Note that we use an l1-norm in the residual error term to add robust-

ness to the estimation problem. Furthermore, as sparsity-promoting

term we use the pseudo-norm ℓ0 to encourage sparsity in the solu-

tion. In (3), τ is the regularization parameter that controls the influ-

ence of the sparsity term in the solution. Solving the optimization

problem (3) is computationally expensive since this is a NP-hard

problem due to the use of the pseudo-norm as sparsity inducing term.
To overcome this apparent limitation, we modify an optimiza-

tion algorithm recently proposed in [11] that solves an optimization
problem similar to that formulated in (3). Extending these ideas to
our optimization problem, first note that (3) can be reduced, after
some manipulations, to a scalar minimization problem

h̃n = argmin
hn

M
∑

i=1

|Ai,n|

∣

∣

∣

∣

∣

Z′
i −

∑L
j=1,j 6=n Ai,jhj

Ai,n

− hn

∣

∣

∣

∣

∣

+ τ‖hn‖ℓ0
(4)

assuming that the n-th component of the unknown vector, h, is al-

lowed to vary while the others are fixed to some pre-estimated values

where Z′
i = Z(pi)/X(pi). Thus, the N -dimensional inverse prob-

lem (3) with complex coefficients is splitted into N one-dimensional

optimization subproblems, one for each element of the unknown

vector. This weighted least absolute deviation problem regularized

by the ℓ0-norm can be solved by computing the weighted median

operator on a complex data [11, Theorem 1]:

h̃n = median



|Ain| ⋄
Z′

i −
∑L

j=1,j 6=n
Ai,jhj

Ai,n

∣
∣
∣
∣
∣

M

i=1



 (5)

followed by a hard thresholding operator

ĥn =

{

h̃n if ‖rn‖ℓ1 − ‖rn −Anh̃n‖ℓ1 > τ

0 otherwise.
(6)

where ⋄ denotes the replication operator defined as wi ⋄ zi =
wi times
︷ ︸︸ ︷
zi, . . . , zi, Ak denotes the k-th column-vector of the matrix A, and

rn = Z′ −
∑L

j=1,j 6=n
Ajhj is the residual term that remains after

subtracting from the frequency response vector at pilot subcarriers

the influences of the multi-path terms but the n-th one. Equations

(5) and (6) reveal that the estimation of h̃n can be thought of as a

two-stage operation. First, compute the weighted median operator

on the data samples that result from shifting and scaling Z′, using the

column-vector |An| of the Fourier sub-matrix as weights. Secondly,

the WM output is then passed through a hard threshold operator

to decide whether the estimated value is relevant or not. Thus, the

n-th channel tap is considered relevant if it leads to a variation on

the ℓ1-norm of the residual vector rn larger than the regularization

parameter τ , otherwise its effect is considered negligible and, hence,

it is forced to zero inducing sparsity in the CIR.

Table 1. Proposed algorithm for OFDM sparse channel estimation

Inputs Z
′ = Xp

−1
ZΩ

Fourier sub-matrix A = [FN ]Ω,L

Number of iterations I0

Init Initial Regularization parameter τ0 = ‖AT
Z

′‖∞

Iteration index k = 1

Channel impulse response ĥ
(1) = 0N

Iteration

Step A For each entry of ĥ, compute

ℜ(h̃n) = median

(

ℜ

{

Z′
i−
∑L

j=1,j 6=n
Ai,j ĥ

(k)
j

Ai,n

}
∣

∣

∣

∣

∣

M

i=1

)

ℑ(h̃n) = median

(

ℑ

{

Z′
i−
∑L

j=1,j 6=n
Ai,j ĥ

(k)
j

Ai,n

}∣

∣

∣

∣

∣

M

i=1

)

h̃n = ℜ(h̃n) + jℑ(h̃n) rn = Z
′ −
∑L

j=1,j 6=n Aj h̃j

ĥ(k)
n =

{

h̃n if ‖rn‖ℓ1
− ‖rn − Anh̃n‖ℓ1

> τk
0 otherwide.

Step B Update the regularization parameter and the estimation of h

τk = τ0β
k , ĥ

(k+1) = ĥ
(k)

Step C Check stopping criterion
If k ≤ I0 then k = k+1, go to step A; else end

Output Estimated Channel Impulse Response ĥ

Upon closer look to the optimization problem formulated in

(4), it can be seen that all quantities involved are complex numbers

(Fourier sub-matrix, CIR and prefiltered-received signal at pilot

tones), therefore solving this optimization problem leads to com-

puting a median operation on complex data. It turns out that the

sorting operation involved in computing the weighted median is not

well established for complex samples. To overcome this apparent

limitation, we extend the definition of the weighted median opera-

tor acting on complex data with complex weights [13]. Thus, the

weighted median operation is computed independently on the real

and imaginary parts of the complex sample data to yield estimated

values for the real and imaginary parts of n-th component of the

CIR.

The n-th estimated component of complex channel impulsive re-

sponse is then obtained as h̃n = ℜ(h̃n)+jℑ(h̃n) which is tested for

relevance by the thresholding operator (6). By doing this marginal

median approach, the loss function that is minimized reduces to

ρ(ǫ) = |ℜ(ǫ)| + j|ℑ(ǫ)| while the sparsity is jointly forced accord-

ing to (6). Note that in solving the scalar optimization problem (4),

we have assume that hk for k 6= n has been fixed to a previously

estimated value. Once h̃n is found, it is fixed and the estimation

process continues with the entry n + 1 of h considering the other

entries as fix values. This process continues iteratively until all the

components of the CIR are estimated.
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Fig. 2. (a) BER curve for the channel estimation approaches. (b) Performances of the various channel estimation approaches as the channel

noise impulsiveness varies. (c) Performance where the number of pilot symbols increases for different number of relevant taps (rt).

Table 1 shows the proposed iterative algorithm to estimate

OFDM channel impulse response. Note that the algorithm starts

assuming that all taps of the channel impulse response take zero

values. As the algorithm progresses, the entries of h are modified as

soon as the estimated value h̃n produces a variation on the ℓ1-norm

of rn greater than the regularization parameter τ . This parameter, in

turn, decreases its value as the algorithm progresses, i.e. (τ = τ0β
k)

for 0 < β < 1. Thus, it is expected that, as the algorithm progresses,

new non-zero entries being incorporated to ĥ. β controls the decay-

ing rate of the regularization parameter τ and its value defines the

convergence rate and the minimal error achieved by the proposed

algorithm.

Furthermore, the regularization parameter τ which turns out

to be the thresholding parameter of the threshold operator controls

whether the estimated value, ĥn, is relevant or not. Its value changes

as the algorithm progresses. Thus, for a fixed value of τk at the

k-th iteration, a median based estimator is run over all entries of h

yielding h̃(k). This estimated valued is the initial condition for the

next iteration with a new τk+1 smaller than the one used at the k-th

iteration.

4. SIMULATIONS

To test the proposed OFDM channel estimation algorithm, we carry

out a series of simulations where the performance of the proposed

approach is compared to those yielded by conventional channel es-

timation methods, (LS and MMSE [1]) and an l1-LS based algo-

rithm [2, 3, 4] that solves an ℓ1-regularized least square optimization

problem to estimate the OFDM channel, where the regularization

parameter is set to 0.01‖ATZ′‖∞ while for the proposed approach

τ0 = ‖ATZ′‖∞, β = 0.65 and 10 iterations. The ODFM sys-

tem used for testing is a 16 QAM/OFDM with Np subcarriers out

of N subcarriers used as pilot signals uniformly distributed on the

entire OFDM frequency domain symbol. The cyclic prefix is set to

32. The relevant taps (rt) of h are randomly located and their com-

plex path gains are randomly generated according to a zero-mean

complex Gaussian. The threshold parameter for the blanking filter

is set to λ0 = 0.5, the optimum value found in [8]. We assume a

fast fadding channel, hence a new realization of the channel is used

for each OFDM symbol. As performance criterion, we use the Nor-

malized Mean Square Error (NMSE) defined by 1
T

∑T

k=1
|Hk−H̃k|2

|Hk|
2

where T is the number of trails and Hk denotes the true channel at

the k-trail. In all the simulations, we use the Geometrical Signal to

Noise Ratio (G-SNR) as a measure of signal-to-noise strength [14].

Furthermore, since we found beneficial for all channel estimation

approaches to mitigate the effect of impulsive noise by the nonlin-

ear prefiltering operation, we used it for the LS, MMSE and ℓ0-LS

channel estimation algorithms.

Figure 2 shows the performances yielded by the various OFDM

CE schemes under additive SαS noise (α = 1.6) using 6.25% of

subcarriers as pilot signals. Note in Fig. 2(a) that the proposed ap-

proach achieves a BER curve closest to the ideal BER curve ob-

tained assuming that the channel frequency response is known at the

receiver. Fig. 2(b) shows the NMSE achieved by the various algo-

rithms as the noise impulsiveness changes. Note that the proposed

approach offers robustness through the all range of impulsiveness

level. Furthermore, as expected, increasing the number of subcarri-

ers from N = 512 to N = 1024 improves the channel estimation

performances.

Fig. 2(c) depicts the NMSE as the number of pilot symbols

changes for several relevant tap numbers. As expected, as the num-

ber of pilot signals increases, the performances achieved by the vari-

ous CE approaches improve at expensive of sacrificing data through-

put. Note that the performance of LS CE remains practically un-

changeable as the number of rt changes insomuch as this approach

does not exploit the sparsity of the communications channel. Our

approach, on the other hand, tends to loss performance as the num-

ber of relevant taps increases, indeed, if the number of nonzero taps

is around 40% the channel length, the communications channel is

no longer considered as sparse so little is gain by exploiting sparsity.

Nevertheless, since the robustness of the loss function used in our

approach, it outperforms the other approaches.

5. CONCLUSIONS

In this paper, we have shown that by exploiting the sparsity structure
exhibited by a multi-path channel in the CE stage of an OFDM sys-
tem significant improvement in performance can be achieved. Fur-
thermore, the use of a robust loss function in the CE stage makes
this approach suitable when the underlying channel contamination
follows a heavy tail distribution function. The proposed approach
combines a memoryless nonlinearity operation to mitigate the ef-
fect of impulsive noise followed by an estimation stage that solves
a ℓ0-regularized LAD minimization problem to estimate the channel
impulse response, exploiting thus the sparsity characteristic of the
channel while, at the same time, adds robustness to impulse noise.
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