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ABSTRACT

In this paper a novel algorithm for estimation and tracking of mul-

tipath components for range estimation using signals with low

bandwidth is discussed. In multipath rich environments ranging

becomes a challenging problem when used with low bandwidth sig-

nals: unless multipath interference is resolved, large ranging errors

are typical. In this work the estimation and tracking of individual

multipath components is studied. The new technique combines

sparse Bayesian learning and variational Bayesian parameter esti-

mation with Kalman filtering. While the former is used to detect and

estimate the individual components, the Kalman filtering is used to

track the estimated signals. Two assumptions are compared: inde-

pendence of multipath components, typical for classical multipath

estimation schemes, versus correlation between the propagation

paths. The later has been found to improve component tracking and

estimation at the cost of increased computational complexity. The

performance of the algorithm is investigated using synthetic, as well

as real measurement data collected during flight trials. Significantly

improved ranging performance can be obtained as compared to the

standard correlation-based ranging.

1. INTRODUCTION

The goal of this paper is the estimation and tracking of the line of

sight (LOS) path between the transmitter and receiver for ranging

applications in multipath environments. This problem is well known

in navigation systems, such as GPS, that rely on the estimation of a

range (or pseudorange) for position calculation. Practically, the re-

ceived signal often consists of a superposition of several copies of

the transmitted signal arriving at the receiver via different propaga-

tion paths – multipath components. This leads to a decrease of the

ranging accuracy. A possible solution to this problem is trying to

resolve the individual propagation paths from the superimposed sig-

nal to reduce the interference. However, the ability to separate the

different paths strongly depends on the bandwidth of the transmitted

signal. For GPS with a bandwidth of 10.23MHz, multipaths may be

separated up to a few meters.

However, when bandwidth is low, the multipath problem be-

comes a challenge. Specifically, a new L-band aeronautical com-

munication system type 1 (LDACS1) [1] has been recently proposed

to implement a navigational functionality and serve as a backup for

GPS in civil aeronautics. Due to a lack of spectrum, the system allo-

cates the channels in spectral holes between other systems in L-band.

The used bandwidth of 500 kHz allows separating multipath that are

several hundreds of meters apart, yet for ground-based systems, sep-

arations up to tens of meters are not uncommon. Specifically, mea-

surement results indicate that standard correlator processing leads to

ranging errors up to several 100m [2, 3]. Thus, algorithms that able

to perform robust ranging in multipath environments are required.

Let us consider the following discrete time model of a multipath

channel (see also, e.g., [4]): The received signal, due to the multi-

path propagation can be represented as a superposition of L specular

propagation paths

y =

L∑

l=1

s(θl)wl + ξ = S(Θ)w + ξ, (1)

where each path consists of a transmitted signal s, nonlinearly pa-

rameterized by θl. In our case, the nonlinear parametrization θl sim-

ply includes a delay of the original transmitted signal s(t) by τl, and

a possible Doppler shift νl. The weightswl represent the attenuation

and a constant phase shift of each path. Finally, the random pertur-

bation ξ represents the measurement noise. It is assumed to be nor-

mally distributed with zero mean and covariance Σ = λ−1I . The

LOS path, if present, is the path with the shortest delay τl. Adding

to that, usually several different non direct paths, the non line of

sight (NLOS) paths exist. Our goal is to estimate and track the LOS

over time using the measured signal y. For simplification, we split

this problem into two parts: first, we estimate the number of signals

in (1) and their parameters Θ = [θ1, . . . ,θL]; then, the estimated

components are tracked over time and the LOS is determined.

The estimation of signal parameters Θ and w has often been

solved using Expectation-Maximization (EM) type of algorithms [5–

7]. Due to the nonlinearity of (1) with respect to the parameter set

Θ, such algorithms significantly simplify the numerical optimiza-

tion, yet they are applicable only when the order L of the model is

known and fixed – an assumption that is rarely satisfied in practice.

However, model order can be assessed by introducing sparsity con-

straints into the estimation, thus allowing joint model order selection

and parameter estimation. With a few minor variations, the general

goal of sparse reconstruction is to optimally estimate the parame-

ters w of the model (1) with fixed design matrix S(Θ) ≡ S̃. The

sparse solution is obtained by imposing specific sparsity constraints

on the signal parameter w [8, 9]. Here we will make use of a spe-

cial class of sparsity techniques, known as Sparse Bayesian learning

(SBL) [4,10,11]. SBL is a family of empirical Bayes techniques that

finds a sparse estimate of w by modeling the weights using a hierar-

chical prior p(w|α)p(α) =
∏L

l=1 p(wl|αl)p(αl), where p(wl|αl)
is a Gaussian probability density function (pdf) with zero mean and

precision parameter αl, also called the sparsity parameter; larger val-

ues of αl drive the corresponding weight toward zero, thus encour-

aging a sparse solution. One particular method for SBL recently

proposed in the literature is a fast variational SBL (FV-SBL) [4].

The FV-SBL algorithm optimizes the corresponding objective func-
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tion – the variational lower bound on the model evidence log p(y)
– incrementally, i.e., with respect to one basis function at a time.

Such an optimization strategy is in many respects similar to the in-

cremental estimation of the multipath parameters employed in the

classical SAGE algorithm [7] and its variational Bayesian extension

– VB-SAGE algorithm [12].

For the tracking of multipath components, different approaches

have been considered. In [13] the different components of a MIMO

channel were estimated using a generalized EM algorithm and

tracked using a Kalman filter. The model order is determined using

minimum description length (MDL) criteria [14]. As the algorithm

is developed for channel sounding, no decision on line of sight is

made. Also, the algorithm is very computationally expensive as

MDL reuqires training multiple models in parallel. In [15, 16] a

particle filter is employed for the tracking of the LOS component

in satellite navigation. However, due to the very nature of a parti-

cle filters they are computational expensive and in general lack the

super-resolution property.

In this paper we combine sparsity-based joint model order selec-

tion and parameter estimation with Kalman-based component track-

ing for ranging applications. For the super-resolution calculation of

the parameters SBL technique is applied and builds on two key con-

cepts: variational Bayesian estimation of signal parameters Θ, and

an incremental FV-SBL algorithm [4]. In contrast to the VB-SAGE

algorithm [17], where multipath components are assumed to be in-

dependent, the FV-SBL based estimation of signal parameters con-

siders correlations between components [18]. The impact of these

correlations on the model order selection and tracking of LOS com-

ponent is analyzed.

Throughout the paper we make use of the following notation.

Vectors and matrices are represented as, respectively, boldface low-

ercase letters, e.g., x, and boldface uppercase letters, e.g., X . We

use el = [01, . . . , 0l−1, 1l, 0l+1, . . . , 0L]
T to denote a canonical

vector of appropriate dimension. Finally, for a random vector x,

CN(x|a,B) denotes a circular symmetric normal distribution pdf

with mean a and covariance matrix B; similarly, for a random vari-

able x, Ga(x|a, b) = ba

Γ(a)
xa−1 exp(−bx) denotes a gamma pdf

with parameters a and b.

2. SIGNAL MODEL AND ADAPTIVE FAST SPARSE

BAYESIAN LEARNING

In the following the variational Bayesian parameter estimation algo-

rithms are described. For more details the reader is referred to the

original publications [4] and [18].

The joint pdf variables from (1) and the sparsity parameters can

be represented as p(w, λ,α,Θ,y) = p(y|w, λ,Θ)p(w|α)p(α)
p(λ)p(Θ), where p(y|w, λ,Θ) = CN(y|S(Θ)w, λ−1I), p(w|α) =

∏L

l=1 CN(wl|0, α
−1
l ), p(α) ∝

∏L

l=1 α
−1
l , and p(λ) ∝ λ−1, fol-

lowing the standard SBL model assumption [4, 19]. The choice of

the prior p(Θ) =
∏L

l=1 p(τl)p(νl) is arbitrary in the context of this

work and is generally application specific. The variational inference

on this graph aims at estimating a “proxy” pdf q(w,α, λ,Θ) that

maximizes the lower bound on the log-evidence log p(y) [20]:

log p(y) ≥ E
q(w,α,λ,Θ)

log
p(w, λ,α,Θ,y)

q(w,α, λ,Θ)
(2)

For the factorization of q(w,α, λ,Θ) two different assumptions can

be made: If the individual components are assumed to be indepen-

dent, q(w,α, λ,Θ) can be expressed as

qU(w,α, λ,Θ) = q(λ)

L∏

l=1

q(αl)q(θl)q(wl), (3)

This assumption is made in the VB-SAGE algorithm [12], as well

as (implicitly) in the SAGE algorithm [7]. However, it is also possi-

ble to assume a correlation between the gains of the different com-

ponents, as it is done in the classical SBL scheme. In this case,

qC(w,α, λ,Θ) factors as

qC(w,α, λ,Θ) = q(w)q(λ)
L∏

l=1

q(αl)q(θl). (4)

The variational factors in (3) and (4) are chosen as: q(w) =

CN(w|ŵ, Φ̂), q(αl) = Ga(αl|1, α̂
−1
l ), and q(λ) = Ga(λ|N/2, Nλ̂−1/2).

In case of parameters Θ we assume that q(θl) = δ(θl − θ̂l), i.e.

we calculate point estimates rather than distributions of these pa-

rameters1. The optimal q(w,α, λ,Θ) is then found by maximizing

(2) with respect to the parameters {ŵ, Φ̂, λ̂, α̂1, θ̂1, . . . , α̂L, θ̂l}
by cycling through all factors in a “round-robin” fashion [20]. The

parameters of the pdf q(w) can be computed as

Φ̂U =
(
λ̂S(Θ̂)HS(Θ̂) + diag(α̂)

)−1

, (5)

Φ̂C =
(
λ̂ diag(S(Θ̂)HS(Θ̂)) + diag(α̂)

)−1

(6)

ŵ = λ̂Φ̂(·)S(Θ̂)Hy, (7)

where Φ̂(·) = Φ̂U if model (3) is used and Φ̂(·) = Φ̂C in case of

(4). The variational update expression for the parameter of q(λ) is

given as

λ̂ = N/
(
‖t− Ŝŵ‖2 +Trace(Φ̂Ŝ

H
Ŝ)

)
. (8)

In case of q(αl), the standard variational inference of its parameters

can be significantly accelerated, if the variational updates of q(wl)
and q(αl) (in case of model (4)), or q(w) and q(αl) (in case of

model (3)) are computed for a single fixed component l repeatedly

ad infinitum. The corresponding stationary points of q(αl) can then

be computed analytically [4, 7]. To this end we compute

ΦU =


λ̂S(Θ̂)HS(Θ̂) +

∑

k 6=l

α̂eke
T
k




−1

(9)

ΦC =


λ̂ diag(S(Θ̂)HS(Θ̂)) +

∑

k 6=l

α̂eke
T
k




−1

, (10)

ςl = e
T
l Φ(·)el and ω2

l =
∣∣∣λ̂eT

l Φ(·)S(Θ̂)Hy

∣∣∣
2

, (11)

where as before, Φ(·) = ΦU if model (3) is used, and Φ(·) = ΦC

in case of (4). Then, the variational parameter α̂l of q(αl) can be

computed as

α̂l =

{
(ω2

l − ςl)
−1, ω2

l > ςl
∞, ω2

l ≤ ςl.
(12)

1As a point estimate we understand maximum likelihood or maximum a

posteriori estimation; the latter case is automatically obtained when a prior

p(θl) 6= const.
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Expression (12) allows one to assess the impact of the lth compo-

nent on the variational lower bound: a finite value of α̂l instructs

us to keep the lth component since it increases the lower bound;

an infinite value of α̂l indicates that the component should be re-

moved. In this way the model order is estimated within the estima-

tion scheme. To compute q(θl) the standard variational inference is

used [20]. This bound is maximized when the Kullback-Leibler di-

vergence between q(θl) and p̃(θl) is minimal. Note that since q(θl)
is constrained to be a Dirac distribution, the variational bound with

respect to q(θl) is maximized when q(θl) is aligned with the mode

of p̃(θl) ∝ exp
(
E
q(w,λ,Θ

l
) log p(y|w,Θ, λ)p(Θ)

)
. By evaluat-

ing p̃(θl) we find the estimates for the delay τl as

τ̂l = argmax
τl

{
log p(τl, ν̂l)− λ̂‖rl − ŵls(τl, ν̂l)‖

2

−λ̂
∑

k 6=l

2ℜ
{
Φkls(τ̂ k)

H
s(τl, ν̂l)

}
− λ̂Φll‖s(τl, ν̂l)‖

2
}
,

(13)

and for the Doppler frequency νl as

ν̂l = argmax
νl

{
log p(νl, τ̂l)− λ̂‖rl − ŵls(νl, τ̂l)‖

2

−λ̂
∑

k 6=l

2ℜ
{
Φkls(ν̂k)

H
s(νl, τ̂l)

}
− λ̂Φll‖s(νl, τ̂l)‖

2
}
,

(14)

with the residuum rl being defined as

rl = y −
L∑

k=1,k 6=l

ŵks(θ̂k). (15)

Let us stress that these above expression under assumption (3) lead

to a version of the VB-SAGE algorithm.

3. SPARSE ADAPTIVE MULTIPATH ESTIMATION

The two algorithms from the previous chapter are however not adap-

tive, but snapshot based. To make the schemes adapt to time vary-

ing scenarios, we employ Kalman filters [21], resulting in the sparse

adaptive multipath estimation algorithm (SAME). Hereby, the main

challenge is to allocate the output of the super-resolution algorithm

to the paths currently tracked in the Kalman filter. This decision is

made comparing their estimated parameters such is amplitude, delay

and Doppler shift. Assume the we are currently tracking M paths

within the Kalman filter and the super-resolution algorithm detects

L components. If M = L, each detected path is associated with the

one showing the largest resemblance of its parameters. If M < L,

a new path is created within the Kalman filter. The M > L case

means, that we are currently tracking a path that no longer exists.

Hence, if a path has not been updated within a certain time, it is

deleted.

For each time instance k, the super resolution algorithm returns a

set of estimated weights ŵ[k] and path parameters Θ̂[k], in our case

delay τl and Doppler frequency νl, for each detected propagation

path. For simplification, we denote the weights and parameters to be

tracked as Ω̂[k] = [ŵT [k], Θ̂
T
[k]]T . For all ϑl[k] ∈ Ω[k], i.e. the

weight and entire set of parameters of path l at the time instance k,

the following first order vector random walk model is assumed:

ϑl[k] = ϑl[k − 1] + ξe[k], N(ξe; 0, σ2
e · I). (16)

The excitation noise ξe drives the change of each parameter over

time. The distributions for each parameter are chosen according to

statistics acquired during the measurement campaign. Parameters

of an individual component, i.e. the weight wl, the delay τl, and

Doppler frequency νl are assumed to be uncorrelated.

All estimates ϑl of the super resolution algorithm are based on

the measured data, and thus contain the measurement noise ξm[k]

ϑ̂l[k] = ϑl[k] + ξm[k], N(ξm; 0, σ2
m[k] · I). (17)

The noise is assumed Gaussian and its variance is estimated using

both the signal to noise ratio for the entire receive signal and the

amplitude estimated by the super-resolution algorithm. Using that

information, an individual signal to noise ratio for every component

is calculated. Based on that, the measurement variance σ2
m is esti-

mated.

Using the Kalman filter equations [21], for each time step k
and component l, estimates for the parameters µ̂

ϑ,l[k] as well as

their variance σ̂
2
ϑ,l[k] are calculated, i.e. the Kalman filter models

distribution of the estimated parameters for path l as Gaussian pdf

N(p̂l(ϑ)|µ̂ϑ,l[k], σ̂
2
ϑ,l[k]). Under the assumption of independent

parameters, p̂l(ϑ) factors as p̂l(ϑ) = p(wl)p(τl)p(νl). This mod-

eling provides a convenient metric for the association of the compo-

nents detected by the super resolution algorithm to the propagation

paths tracked in the Kalman filter.

Assume M different components are being tracked in the filter

and thus providing M Gaussian pdfs p̂m(ϑ). The logarithmic met-

ric dim between each of the I components with parameters ϑl[k],
detected by the super-resolution algorithm, belonging to one the M
tracked paths can simply be evaluated by inserting each parame-

ter vector in the pdf defined in p̂m(ϑ). Due to the factorization

of p̂l(ϑ), the resulting dlm can be written as dlm = log p(wl) +
log p(τl)+log p(νl).Using dlm, I detected components can be allo-

cated to M tracked paths in the filter using the following association

function: A(θl) = argmaxm dlm. If no matching path with a met-

ric under a certain threshold is tracked, i.e. argmaxm dlm < ψmin, a

new path is generated. To avoid tracking of no longer existing paths

in the filter, it is removed, if it has not been updated within a certain

time ψLifetime.

It is important to stress, that using this scheme, also the super-

resolution can benefit from the Kalman filter: Hereby, each Kalman

prediction is passed as initialization to the parameter estimation al-

gorithm. This significantly reduces the occurrence artifacts often

experienced if no initialization is used.

4. RESULTS

In this section, we show the results of the two different algorithms

described above. We start with synthetic data and then continue to

real world measurement data, acquired during flight trials carried out

in November 2012 [2, 3].

The transmit signal is generated according to the LDACS1 stan-

dard, currently one of the most promising candidates for the future

air-traffic management (ATM) data link [1]. LDACS1 uses OFDM

as modulation, accommodates has 50 subcarriers into a 500 kHz

bandwidth and is planned to be employed in the aeronautical L-

band. Each OFDM symbol, consisting of a useful symbol duration of

102.4 µs, is extended into a cyclic prefix (CP) of length 4.8 µs and an

additional windowing time of 12.8 µs in order to reduce out of band

radiation. Assuming the speed of light in air, one sample equals the

distance of about 480m. The largest entity of the LDACS1 signal is

a super-frame of length 240ms. For the synthetic data it is assumed

to be continuously transmitted. Due to restrictions of the setup, for
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Fig. 1: Estimated LOS and NLOS components for simulated data.
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Fig. 2: Sparsity parameter α for the different components.

the measured data, every second four super-frames were transmitted,

leaving a 40ms gap between each transmission.

4.1. Simulated data

In Fig. 1 estimated ranges for the assumption of uncorrelated and

correlated components at an SNR of 15 dBm are shown. The rela-

tive Doppler of of the multipath to the LOS is 2Hz, a realistic value

for the environments under consideration. For better comparison to

the standard method for range estimation, also a conventional time

domain correlator is shown. From Fig. 1 it can be seen, that the

correlator exhibits strong oscillations of up to 100m, caused by the

superposition of paths with different Doppler frequencies. For both

implementations, the number of components as well as their range

can be estimated and tracked accurately, as long as their delay is still

separated by more than a sample. However, once in the subsample

region, for independent components, the algorithm is no longer able

to separate the paths. This leads to the one detected component ex-

periencing the same oscillations as for the standard correlator. For

correlated components this behavior is not observed, the NLOS path

is still detected.

This behavior can be best explained when looking at the sparsity

parameter α in Fig. 2: For independent paths alpha diverges, when

the paths relative delay decreases too strongly. This leads to the

removal of the component. Using the assumption of correlated com-

ponents however allows the paths still to be separated. Nevertheless,

the estimation performance slightly suffers, leading to an incorrect

estimation of both paths.

For a more quantitative assessment of the range errors, their his-

tograms are plotted in Fig. 3. Herein large improvements over the

standard correlator by the algorithm become apparent. While the ap-

plication of a correlator results an root mean squared error of 38m,

application of the algorithms leads to an reduction to 27m for uncor-
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Fig. 3: Histogram for the range errors.
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Fig. 4: Estimated LOS and NLOS components for measured data.

related, and 13m for correlated components. Nevertheless, for the

second implementation, reduction of the RMSE is traded in for an

increase of the mean error.

4.2. Measured data

The measured data is taken from flight trials conducted in November

2012. For those measurements, a ground truth only exists for the line

of sight path which is measured using the GPS positions2 for both

the transmitting ground antenna and receiving aircraft antenna.

In Fig. 4 results from a three second segment of a low altitude

flight at 2900m is shown. It becomes obvious that the environment

is influenced by multipath. A very prominent NLOS path is observed

around 400m relative the to the LOS. Another prominent multipath,

detected and tracked by the algorithm at a range of around 2500m, is

not shown for a better readability of the plots. Again, the algorithm

leads to a reduction of the RMSE from 30m for the normal correlator

to 16m and 6m for the uncorrelated and correlated assumption.

5. CONCLUSIONS

In this work we discussed a novel algorithm for estimation and

tracking of multipath components in multipath rich environments.

Hereby, we compared two assumptions of independent and corre-

lated multipath components. We have shown, that for both simulated

and measured data, the proposed algorithms can lead to a significant

improvement of the estimated range over the standard correlator-

based processing. Assuming correlations between the components

generally allows tracking of close multipaths components; assum-

ing independence the NLOS components the estimated models are

sparser, i.e., the components are removed more often, leading to

residual interference.

2An RTK (real time kinematics) GPS carrier phase position solution has

an accuracy in the sub 10 cm region.
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