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ABSTRACT

This paper first demonstrates the ability of a recently de-
veloped complex adaptive notch filter (CANF) to track a
complex-valued multicomponent chirp signal (CMCS), and
provides an analysis of the convergence of the frequency pa-
rameter. Next the design is extended, to enable the adaptation
of both the frequency and bandwidth parameters; highlight-
ing the need for a steepest ascent approach to adapt the band-
width parameter. Adapting the notch bandwidth parameter(s)
to track a complex sinusoid signal (CSS), or when filters are
cascaded for multiple CSSs; allows the design to reduce the
noise output from the CANF structure; and this performance
advantage is shown in simulations.

Index Terms— adaptive-notch-filter, bandwidth,
complex-valued multicomponent chirp signals

1. INTRODUCTION

Many adaptive notch filters (ANFs) have been developed over
the last four decades, initially via direct coefficient scaling,
and more recently by all-pass forms which are generally con-
sidered to provide superior solutions; and in our related re-
search four well known designs were compared in [1]. ANFs
have been used in a variety of applications such as: radar,
sonar, advanced sensors, and power applications; where some
interesting power applications are: active power filters [2],
tracking AC phases [3], and removing voltage flicker [4].

In this paper, firstly we demonstrate the ability of the
CANF structure due to Wheeler and Chambers [5] to track a
CMCS, and we highlight that this design can be directly com-
pared to the structure proposed by Regalia in 2010 [6]. Then
we apply an ordinary differential equation approach to con-
firm the convergence of our frequency estimation algorithm.
We note that Regalia’s method implements an equation-error
approach, whilst we applied an output-error approach which
provides a more robust performance as demonstrated in [5].

Then we extend the design to incorporate the ability to
adapt the bandwidth parameter of the CANF, and demon-
strate the performance improvement achieved when tracking
a CMCS and a frequency hopping CSS.

Now to introduce this CANF structure, we begin with the
first order z-domain all-pass transfer function

A(z) =
z−1β − α
1− αz−1β

. (1)

Then by subtracting the output of this transfer function from
the input as shown in Fig. 1, a notch function can be created.

Fig. 1. The CANF proposed in [5], where the structure within
the box defined by the dashed line denotes CNF in Fig. 5 (b).

The z-domain transfer function for the CANF structure
shown in Fig. 1 is derived as C(z) = 1

2{1−A(z)}, where

C(z) =
E(z)

U(z)
=

1

2

(1 + α)(1− z−1β)

1− αz−1β
. (2)

Two parameters may be observed within equation (2), the first
of these is 0� α < 1, which is a real coefficient that controls
the notch bandwidth; the second parameter β = ejθ, where
the value θ is the complex phase shift angle, which is equiva-
lent to the frequency tracked by the CANF.

This paper may be summarised as follows: Section 2
demonstrates the ability of this structure for tracking a CMCS,
comparing the performance with Regalia’s design [6], then
2.1 analyses convergence of the frequency parameters update.
Next, Section 3 discusses the update of the bandwidth param-
eter, then its update is derived in Section 4; this leads onto
results for tracking a CMCS and a hopping CSS in Section 5,
and lastly the paper is concluded.

As the topic has been introduced, now tracking CMCSs is
investigated.
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2. TRACKING COMPLEX-VALUED
MULTICOMPONENT CHIRP SIGNALS

In Regalia’s paper [6], he demonstrated that the complex ver-
sion of his design is capable of tracking a CMCS, which in
this case is a quadratically varying frequency of the form

u(n) = Ame
jφ(n) + b(n); (3)

wherein, Am is a scale factor: which can be taken as real, as
if Am were complex its phase angle would be absorbed into
φ, leaving behind a real-valued scale factor; b(n) is a white
complex circular Gaussian noise process, and φ(n) is

φ(n) = φ2n
2 + φ3n

3; (4)

where the values used to create the CMCS in Fig. 2 are: φ2 =
−0.004 and φ3 = 1.2 × 10−6. In [6], Regalia demonstrates
the ability of his design to track a CMCS, which we include in
this paper as Fig. 2 (a); however, we apply a normalised least
mean square (NLMS) update, with an adaptation gain (µ) of
0.08, and γ = 0.8, where γ is the forgetting factor used in the
recursive gradient energy estimation.

Equivalently, a comparable result may be produced with
the proposed structure, and this result is shown as Fig. 2 (b);
which was achieved by using the following parameters: µ =
0.15, γ = 0.8 and α = 0.9 both in Fig. 2 (a) and (b). Note that
the learning parameters we used were the optimum settings
found empirically to achieve the best tracking performance
with minimum variance.

(a) Regalia’s approach [6] (b) The proposed structure

Fig. 2. Tracking a complex chirp signal with the two notch
filter structures.

Please take note that when tracking a CMCS the variance
has been estimated from the 50th to the final sample.

It is clearly visible when comparing Fig. 2 (a) and (b),
that the proposed structure produces slightly superior results
as compared to Regalia’s structure; and this improvement is
also clarified by Table 1. Also observe that Table 1 contains a
full gradient term for β, which provides a slight improvement;
this can be derived in a similar way to the full gradient term
for α, which will be shown in Section 4.

Table 1. Comparison of methods for tracking a CMCS.
Method σ2

Regalia 2010 [6] - Fig. 2 (a) 0.0026
The proposed structure - Fig. 2 (b) 0.0017
Full gradient for β structure 0.0016

2.1. Convergence of the Frequency Parameter’s Update

To demonstrate the convergence of our scheme to the solu-
tion, consider the adaptation algorithm applied to a general
parameter θ

θ(n+ 1) = θ(n)− µRe[e
∗(n)grad(n)

ψ(n)
]; (5)

where we are analysing the angle parameter θ, with a fixed α;
herein, grad(n) is the gradient shown in Fig. 1, which is cal-
culated as the derivative of the output-error e(n), with respect
to θ; and ψ(n) = ψ(n− 1)γ + (1− γ)(grad(n).grad∗(n)),
noting (.)∗ denotes the complex conjugate. Now building
upon the approaches in [6] & [11], where [11] shows that for
sufficiently slow adaptation, the evolution of the adaptation
algorithm is weakly linked to an ordinary differential equa-
tion of the form

dθ

dt
= E{Re[e

∗(n)grad(n)

Ψ
]|θ}. (6)

Herein as notationally emphasised, the expectation on the
right-hand side is evaluated for a fixed θ. Also, to proceed
we make the assumption that the normalisation term ψ(n) is
a constant, which we denote Ψ.

From (1) the transfer functionsG(z) and F (z) linking the
input to the notch output and the filter regressor, are given as

G(z) =
1 + α

2

1− ejθz−1

1− αejθz−1
F (z) =

1 + α

2

−jejθz−1

1− αejθz−1
.

Then we may define the expectation E{e
∗(n)grad(n)

Ψ
} as

the inner product

E{e
∗(n)x(n)

Ψ
} =

1

2π

∫ π

−π
Su(ω)G(ejω)F ∗(ejω)dω; (7)

where, Su(ω) is the power spectral density of the input de-
fined in (3), which is: Su(ω) = 2πA2

mδ(ω−ω0) +σ2, herein
ω0 is the unknown frequency, which gives us the expectation

E{e
∗(n)x(n)

Ψ
} =

A2
m

Ψ
G(ejω0)F ∗(ejω0)

+
σ2

2πΨ

∫ π

−π
G(ejω)F ∗(ejω)dω;

wherein,

G(ejω0)F ∗(ejω0) =
(1 + α)2

4

(1− ej(ω0−θ))(−je−j(ω0−θ))

|1− αej(ω0−θ)|2
.

(8)
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The real part of this equation then becomes

Re(E{e
∗(n)x(n)

Ψ
}) =

A2
m(1 + α)2

4Ψ

sin(ω0 − θ)
|1− αej(ω0−θ)|2

+
σ2(1 + α)2

8πΨ

∫ π

−π

sin(ω0 − θ)
|1− αej(ω0−θ)|2

dω︸ ︷︷ ︸
=0

; (9)

herein the noise-induced term vanishes, as this is the integral
over one period of a function, which is odd about ω0 = θ.
Therefore, the associated differential equation becomes

dθ

dt
=
A2
m(1 + α)2

4Ψ

sin(ω0 − θ)
|1− αej(ω0−θ)|2

. (10)

Then convergence of θ to ω0 from (10) is shown by choosing
a Lyapunov function of the continuous variable t

L(t) = [ω0 − θ(t)]2, to obtain
dL(t)

dt

=
dL

dθ

dθ

dt
= −A

2
m(1 + α)2

2Ψ

(ω0 − θ) sin(ω0 − θ)
|1− αej(ω0−θ)|2

< 0,

for θ 6= ω0.

Now assuming (ω0−θ) is restricted to the principle range
−π ≤ ω0 − θ ≤ π, which implies that L(t) is monotonically
decreasing, so that θ(t) converges to ω0 as desired. However,
if |ω0 − θ| > π, then θ converges to ω0 + 2πk: for an ap-
propriate integer k; since θ intervenes through the filter com-
putations purely from the factor β = ejθ(n), a modulo−2π
ambiguity in θ is unavoidable.

Next we discuss the method for updating the bandwidth
parameter.

3. BANDWIDTH PARAMETER ADAPTATION

Now, to demonstrate the effect of adapting the bandwidth pa-
rameter for a frequency hopping CSS, consider Fig. 3.

Fig. 3. The effect of utilising different values of αwhen track-
ing a CSS.

Observe in Fig. 3 that the ‘wide notch’ locates the target
signal quickly, however has significant noise on the estimate;
whilst the ‘narrow notch’ is slow to locate the target signal
but has much less noise on the estimate. Thus, highlighting
the benefits of adapting the bandwidth parameter.

Little research has been published to date on updating the
bandwidth parameter of any notch filter, although notable ref-
erences are: [7]-[10]. Unfortunately, these works do not show
in detail why a steepest ascent rather than descent approach,
is required for adapting the notch bandwidth parameter.

A significant point to note is that when updating the band-
width parameter (α) a direction of ascent must be applied.
This has been implemented previously by other researchers;
however, has not been fully explained, which is the case in
[8]. To minimise the output mean square error (MSE) the
expected result was for α to be adapted with a direction of
descent; although, if a steepest descent approach is applied
then α converges to minus one.

To provide an explanation for this, if we assume a single
CSS input with noise as in [8], whilst β is fixed at the ex-
act correct frequency; then just noise will be output from the
CANF. Therefore, the CANF will become as wide as possi-
ble to minimise the noise output, thus producing an all-stop
response essentially, which does indeed reduce the noise vari-
ance.

Now to demonstrate the effect of α increasing observe
Fig. 4, where the integral defined in (11) and (12), also clearly
increases. Considering this integral implies that a method of
steepest ascent should be used to update α, which allows the
transfer function to approach the perfect notch case; where the
perfect case is when the CSS has been removed, thus leaving
purely white noise at the CANF’s output.

Fig. 4. The magnitude response of the notch filter as a func-
tion of two values of the bandwidth parameter.

The equation that defines the noise variance (σ2) at the
CANF output signal is found from the power spectral density,
which is

σ2 =
1

2π

∫ π

−π
P (ω)dω; (11)

herein P (ω) is the power spectral density of the CANF output
signal. This expression may also be re-arranged as follows

σ2 =
σ2
N

2π

∫ π

−π
|C(ω)|2dω, (12)

where C(ω) = C(z) by applying the transformation z = ejω

as in (2); the last term σ2
N is defined as the input noise vari-

ance. This implies that a steepest ascent algorithm should be
applied in α’s update. Thus, the update equation for α is

α(n+ 1) = α(n) + µαRe(e
∗(n).grad α(n)/ψα(n)).

(13)
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Within this equation the term ψα(n) is again a recursive cal-
culation of gradient energy, and the gradient of the output
MSE with respect to α is grad α(n). Note that stability of the
CANF is preserved by limiting the maximum value of α(n),
and therefore a similar analysis as in Section 2.1 is unneces-
sary; where α(n) = max(0.995, (13)).

Next we derive an update equation for α, since the correct
form of the learning algorithm has been identified.

4. THE UPDATE EQUATION FOR THE
BANDWIDTH PARAMETER

To begin the derivation of this full gradient term, recall that
the z-domain transfer function for this CANF is

C(z) =
E(z)

U(z)
=

1

2

(1 + α)(1− z−1β)

(1− αz−1β)

=
1

2
(1 + α)(1− z−1β)(1− αz−1β)−1. (14)

Then differentiating the products containing α, yields the
equation for the update of α to be

GRAD α(z)

U(z)
=

1

2
[

(1 + z−1β)

(1− αz−1β)
× (1− z−1β)

(1− αz−1β)
], (15)

where a second filter is required to implement this expression;
and (15), can be implemented as shown in Fig. 5 (a).

(a) A structure that can apply α’s
update, for tracking one CSS.

(b) The structure required
for tracking two CSSs, whilst
adapting individual α values.

Fig. 5. Structures capable of implementing α’s update for
tracking one and two CSSs.

Then, the complete structure necessary for tracking two
CSSs is shown in Fig. 5 (b). Table 2 now shows the additional
complexity required to adapt α.

Tracking a single CSS Tracking two CSSs
Method ÷s ×s +s ÷s ×s +s
The Orig. appr. 2 10 8 4 24 21
Adapting α 4 19 15 8 43 42

Table 2. The computational complexity for tracking one and
two CSSs, with α fixed then adapting, at one time sample.

Moving on, the next section of this paper contains the re-
sult for tracking a CMCS and a frequency hopping CSS.

5. TRACKING A CMCS AND A
FREQUENCY HOPPING CSS

This section contains the results for tracking a CMCS and a
frequency hopping CSS simultaneously. Firstly, with a fixed
value of α; then α is adapted: which is shown in Table 3.

CMCS 1 CMCS 2
Method σ2

1 σ2
2 σ2

1 σ2
2

α = 0.8 7.02e-04 5.76e-04 7.75e-04 8.17e-04
Adapt. α 8.96e-06 6.45e-05 3.13e-05 1.62e-04

Table 3. Comparison of the variances with a fixed then adapt-
ing α values, whilst tracking a chirp and a hopping CSS.

Wherein, for CMCS 1: φ(n) = 0.1× 10−6n3 − 0.0005n2

and for CMCS 2: φ(n) = 0.3× 10−6n3 − 0.002n2 + 2n.

a) The adaptation of both α
values in this CANF.

b) The tracking performance
of the CANF.

Fig. 6. Tracking a CMCS and a hopping CSS simultaneously,
whilst adapting values of α for each signal. Herein: µβ = 0.1,
µα = 0.001, γβ = 0.9 and γα = 0.8.

Table 3 and Fig. 6 demonstrate that adapting α generates a
significant improvement to both signals.

Please note, the improvement gained from adapting the α
whilst tracking frequency hopping CSSs with this approach,
will be published in [12].

6. CONCLUSION

This paper demonstrated the strong performance of a new
CANF for tracking a CMCS, as compared to [6].

We also showed that a method of steepest ascent is re-
quired for the adaptation of the bandwidth parameter α; and
demonstrated that the performance of the CANF can be sig-
nificantly improved if both the bandwidth and frequency pa-
rameters are updated simultaneously when tracking a hopping
CSS and a CMCS.

The computational complexities with and without the
adaptation of α have been included in this paper; this demon-
strated that although the performance of this CANF structure
can be significantly improved by adapting the bandwidth pa-
rameter, this may double the complexity of the design: which
may be significant in real-time processing.
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