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ABSTRACT

In this paper, we consider the problem of social learning when deci-
sions by agents in a network are made randomly. The agents receive
private signals and use them for decision making on binary hypothe-
ses under which the signals are generated. The agents make the de-
cisions sequentially one at a time. All the agents know the decisions
of the previous agents. We study a setting where the agents instead
of making deterministic decisions by maximizing personal expected
utility, they act randomly according to their private beliefs. We pro-
pose a method by which the agents learn from the previous agents’
random decisions using the Bayesian theory. We define the concept
of social belief about the truthfulness of the two hypotheses and an-
alyze its convergence. We provide performance and convergence
analysis of the proposed method as well as simulation results that
include comparisons with a deterministic decision making system.

Index Terms— social learning, Bayesian learning, information
aggregation, multiagent system, decision

1. INTRODUCTION

It is an important issue in social learning how agents make decisions
and learn from others’ decisions. When individuals make decisions
based on private and imperfect information, it is natural that they
also learn from others’ decisions made in similar situations. The
agents can then make their own decisions with the purpose of maxi-
mizing some utility function. A large body of literature investigates
this problem including non-Bayesian social learning approaches [1,
2, 3, 4], and Bayesian social learning methods [5, 6, 7, 8, 9]. In this
paper, we focus on the Bayesian methods. Some work on this issue
can be found in [5, 10, 11], where the interest is to study herding
behavior and information cascade. In other works [6, 12], the con-
ditions for asymptotic learning are studied. Recently, the concern of
the effect on agent’s utility function from previous decisions is ad-
dressed in [13]. An overview of models and techniques for studying
social learning can be found in [5, 8].

In this paper, our contribution lies in that we consider random-
ness in an agent’s decision making. In most of the current literature,
the agents are assumed to be “rational”, which means that each agent
makes decision in order to maximize the expected value of its utility
function. Once the agents obtain information and form their beliefs
on the true state of nature, they behave deterministically. However,
in some scenarios, the behavior of agent may be by design random.
In this work, we replace the “rational” assumption of the agent be-
havior with a model of random decision making that establishes a
random mapping from the agent’s belief to the action space. We
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present a method that implements Bayesian learning by the agents
in a sequential decision making scenario, there each agent has the
ability to use Bayes’ rule to form its belief on the true state of nature
based on its private observation and the actions made by previous
agents. We analyze the evolution of beliefs in this system theoreti-
cally and demonstrate its performance by simulations.

The paper is organized as follows. In the next section we state
the problem. In Section 3, we present the proposed Bayesian learn-
ing method. We prove the convergence of the social belief and ac-
tions in Section 4. Simulation results are provided in Section 5, and
concluding remarks in Section 6.

2. PROBLEM STATEMENT

We consider the sequential decision making problem in linear net-
works of Bayesian agents A,,, n € N*, where each agent makes a
decision after it gets its private observation and the decisions of all
the previous agents. Mathematically, each agent A,, receives an in-
dependent private observation vy, that is generated according to one
of the following two hypotheses:

Hl : yn - 9 + wn7
Ho : Yn = Wn, (D

where 6 is known and w,, is the observation noise modeled as a
Gaussian random variable with zero-mean and known variance o2,.
Without loss of generality, we assume that > 0. For every agent,
its prior probabilities of the hypotheses are noninformative, where
we let p(Ho) = p(H1) = 1/2.

Let an(€ A = {0,1}) be the decision of agent A,, and a1.x,
denote the decision sequence from agent A; to agent A,. Then the
agent A, can formulate its private belief in H1, p(H1|1:n—1,Yn)
by using the Bayes rule given by the following equation, ¥n € NT,

1
(1 —mn—1)pynlHo)’
Tn—1P(yn|H1)

p(H1|a1:n—1»yn) 2)

1+

where we define 7, to be the social belief as a posterior on H; con-
ditioned on the action sequence until agent Ay, i.e.,

Tpn = p(H1|a1:'n)avn € N+7 (3)

with 7o being defined by 1/2. Here we remark that the social belief
mn—1 serves as the prior knowledge of agent A,, before it has its
private observation ¥, .

For any agent A,,, after obtaining the private belief by the Bayes
rule in (2), we assume that it makes its decision by drawing it from



the following probability mass function:

p(an = k|lQ1m—1,yn) = p(Hi|a1:m-1,yn), Yk € {0,1}. (4)
In other word, agent A,, makes its decision by generating a Bernoulli
random variable with probability p(H1|ai:n—1,Yn) to be one as its
decision. By contrast, in most of the existing literature, “rational”
agents make decision 1 whenever p(H1|®1:n—1,yn) > 0.5 and 0
otherwise. When the utility is 1 if an agent makes the right decision
and 0 otherwise, the expected utility of agent A,, is maximized by
this deterministic policy. After making the decision a,, agent A,
broadcasts its decision to all the subsequent agents, and they all up-
date their social beliefs from 7,1 to m,. For clarity, we present a
diagram that depicts the random system in Fig. 1.

Fig. 1. Sequential decision making based on private signals and all
the decisions made by previous agents.

In the following sections, we propose a Bayesian learning
method for updating the beliefs of the agents. We show that accord-
ing to the method, the expected value of social belief asymptotically
converges to the true state of nature, or mathematically, we claim
that

lim Er, =k, Vk € {0,1},

n— oo

&)

where k is the index of the true hypothesis.

3. THE PROPOSED BAYESIAN LEARNING METHOD

We propose a method where the agents update their social beliefs by
Bayes’ rule from 7,_1 to 7,. For all the agents A,, n € NT, the
social belief is updated according to,

1—ay
7Tn—1(1 - lgll))
Tne1(1—10) 4+ (1= m1)(1 —13)

X <
where 1)) = plan = 1|ag,_1,Ho) and I = p(a,
1|a1:n—1,H1) denote the probability of agent A, making decision
a, = 1 given the decision sequence up to a,,—1 and the true state
of nature being Ho or H1, respectively. For the case where n = 1,
we define that I{” = p(a; = 1|Ho) and IV = p(ar = 1[H1).

In order to obtain I and I\, we first need to get the probability
that a, = 1 with a known observation y,,, and then marginalize y,.

Tn

11 v (6)
anll'gzl) + (]- - anl)lszO) '
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Given the observation yy, the agent A,, makes its decision according
to its private belief by the following equation:

p(Hilown—1,Yn)
1
o <p(7'11|041:n—1,yn)>
1 +e p(HO|O¢1:n—1yyn)
_
1+ e Bun—7n)’

p(an == 1|a1:n717yn)

)

2
Ow Tn—1

5 19 & 1- Tn—1 w
last sign of equality is due to the data model in (1). Thus, we can

S )

0
where v, = = — lo ,and 8 = —, and where the
o

log <p(7'11 |a1:n—1, yn)

p(Hilorin—1)p(yn|H1)
1
p(?‘(olal:n—l»yn) o8 (

p(Hola1:n—1)p(yn|Ho)

o Tn—1 0 ‘92

= log( 1-— TI'n_]_) + o2 Yn = 202,
0

= E(yn —Tn)- ®

With this we have shown that with 7,1, the agent A,,’s behavior
can be modeled by a logistic function where the argument is the ob-
servation y,, and the dependent variable is the probability of making
a decision of 1. Here we remark that the shaping parameter 3 is
defined by the signal to noise ratio of the data model, and the shift
parameter -y, is just the threshold given by the Bayesian hypothe-
sis testing method. When y, = 7y, we have p(H1|®1:n—1,Yn)
p(H0|a1:n717yn) = 1/2

The agent A,, needs to implement the marginalization of vy, to
get lgc), Vk € {0, 1}, according to

lSLk) p(an = 1|a1:n—1,Hk:)

o0
/ p(an = 1|a1:n—1,Yn)D(Un|Hk)dYn
o0

. <_ (yn — 0k)*

202

w

> 1 L
Tt e Bun) Jargz P

where §p = 0 and 6, = 6.
We summarize the behavior of agent A,, at time slot ¢ < n by
the following steps:

Step 1: If t = n, after observing y,,, agent A,, calculates the pri-
vate belief by (2) and makes a random decision by (4). Oth-
erwise, agent A,, implements step 2.

Step 2: The agent A,, calculates 7, from the current social belief
m_1 by (8) and the two likelihoods 1’ and I") by integra-
tion in (9).

Step 3:  After observing the action of agent A, the agent A,, up-
dates its social belief from 7;_1 to m; by (6).

We also point out that the above sequential learning algorithm be-
longs to the “’social learning filter” in [5].

4. ANALYSIS

In this section, we analyze the asymptotic property of the proposed
sequential method. As pointed out in (3), the social belief is a de-
terministic function of the action sequence, whereas the action se-
quence a.p, is random due to the data model. We first examine the

o

mny

(C))



A(Oélznfl) =

expected value of the social belief, E,, which is given by,

Z p(alzn|%1)p(%1|a1:n)

ayp €A™

Y. plaaaalH)

alp—1€A"T!T

Emy,

1
X Z p(anlal:n—hHl)p(HﬂO‘lm)’ (10)

an=0

Now we present our main analytical result by the following the-
orem:

Theorem 1 In the proposed random decision making system, if the
agents update their social beliefs using Bayes’ rule according to (6),
the expected value of social belief asymptotically converge to 1 when
the true state of nature is Hy = Hi, and 0 otherwise, i.e.,

. U RY if Hy = Ha,
tliIEO]ETrn[t] = {07 it My — Ho. (11)

Proof: Considering the symmetric structure of the proposed sys-
tem, we just prove the convergence of social belief to 1 in the case
where the true state of nature is H. The proof of convergence to 0
can be repeated with just notational changes. Without loss of gener-
ality, we assume that the true state of nature is #;.

We first show that Emy [¢] increases in terms of n. By (10), we
can write,

Ern —Emp1 = Z

alip—1€ATTL

p(al:n—l |H1)A(a1:n—1)a (12)

where A(ai:n—1) is a function of the action sequence o1:,—1, Which
is given by,

1

an=0

(13)
Therefore, to prove that Em,, > Em, _1, it is sufficient to show,
A(arin—1) >0, Yag,—1€ A" (14)
By equation (6), we can write,
Alarm1) = g,;_l(l —y2 _
Tno1(1=10n")+ (1 —mn_1)(1 = 1x")
o1 () e (15)

ﬂ-n—ll'szl) + (1 - Wn—l)ZSLO)
From the above equation, one can derive that,

TTn—1

4

Alorm-1) = (1= mu-2)? (WY —1D)%, 16
where Z is the multiplication of the two denominators and is given
by Z = (ma-1(1 =1 + (1 =) (1= 1)) (mna I 4 (1 —
7Tn_1)l£LO)).

We next need to show Vn € N, 0 < 7, < 1. This claim can
be proved by mathematical induction. Since we define 7o = 0.5,
we have 0 < mo < 1. Assuming that 0 < m,_1 < 1 is true,
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Z plan|arin—1, H1)p(Hi|aan) — p(Hi|oain—1).

then by (6), it holds that 0 < m, < 1ifand onlyif 0 < I < 1
and 0 < IV < 1. By 9), Vk € {0,1}, 0 < I < 1 when

0 o

____10 Tn—1
=37 g

T is finite, which is guaranteed by the
— TTn—1
assumption in the induction step that 0 < m,_1 < 1. Thus, we have
shown that

0<m, <1, VneN. (17)

Following the result in (17) and (9), we have (lill) — 120))2 > 0.
Then (16) shows that A(a1:,—1) > 0, which is a sufficient condition
for Em,, to be increasing in terms of n. Considering the fact that
Er, < 1Vn € N*, we have shown that given the true state of
nature is H1, the limit of E7r,, exists and it is 1. With this, the proof
of (11) is completed. O

From theorem 1, one can immediately state a corollary that both,
the social belief 7, and the action of agent A,, ay, converge to
k € {0,1} in probability when #y, is the true state of nature. Then
it holds that

lim p(mn, =k) = 1, (18)
lim p(an =k) = 1. (19)
n—oc

The statement (18) can be shown by contradiction. Without loss of
generality, we continue to assume that k¥ = 1. Then if we assume
that p(7, = 1) < 1 when n goes to infinity, noting that 7, can be
no larger than 1, we have that Em,, < 1, which is in contradiction
with theorem 1. Therefore (18) holds.

For the statement (19), we also assume that £ = 1. From (2), it
holds that when 7, = 1, the private belief p(H1|®1:n, Ynt1) = 1
regardless of the observation ¥, 1. Hence, the event ai,, 41 = lisa
subset of the event 7,, = 1. Therefore we get that p(an41 = 1) >
p(mn = 1). Noting that p(a, = 1) < 1, (19) can be proved by (18).

S. SIMULATION RESULTS

In this section, we present simulation results on the evolution of so-
cial belief in our sequential system along with some numerical com-
parisons with a deterministic decision making method from [8]. In
the deterministic method, given the same observation model in (1),
after calculating the private belief p(H1|a1:n—1, Yn), the agent A,
made a decision by the following rule:

an, = L
n — 0’

If we set the reward to one when the agent made a decision identical
to the true hypothesis, and zero otherwise, by the above rule, the
expected utility of the agent A,, was maximized.

In the first experiment, we verified the analytical result of the
expected social belief by Monte Carlo methods, which were con-
ducted with 2,000 trials. In each trial, we set the number of agents
to be 1000. The parameters were o, = 1, with different § = 1,
0 = 0.5 and 6 = 0.2. The results are shown in Fig. 2. On the
abscissa, we plotted the agent index and on the ordinate the estimate
of the expected social belief, which was given by the average social
belief from all the 2,000 trials. The private signals of the agents were
generated according to H;.

In Fig. 2, it was shown that the expected social belief was in-
creasing in both methods, and we observed crossovers of the evolu-
tion of expected social belief in cases where # = 1 and 0 = 0.5. If
we extended the abscissa to n = 2,000, we also see the crossover

if p(Hilarim—1,9n) > 1/2,
otherwise.

(20
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Fig. 2. The convergence of social beliefs with two methods, where
the red and blue lines correspond to the random and deterministic
decision making methods, respectively.

showing in case where § = 0.2. It can be seen that the higher signal-
to-noise ratio in the data model yielded faster convergence.

In order to show the herding behavior of the agents, we plotted
the histogram of social belief in Fig. 3, where the parameters were
0w =1land § = 0.5.
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Fig. 3. The histograms of social beliefs with random and determin-
istic decision making.

In Fig. 3, the upper plot shows the histogram of social belief in
the random system for agents Azq, A2s0, As00, A7s50, A1000, and the
lower plot displays the social belief in the deterministic system for
the same agents. It can be seen that in the deterministic system, the
agents were more likely to show herding behavior entailing that the
social belief became almost unchanged. In [10] and [11], more anal-
ysis is provided about the herding behavior in deterministic system.
It was shown that in these systems, once several consecutive agents
made a decision in favor of H,, it was very hard for the subsequent
agents to make the opposite decision. In the random system, the
agents’ behaviors allow for choosing the correct hypothesis even if
several consecutive agents made identical decisions, the social belief
kept evolving.

In Fig. 4, we plotted the proportion of agents that made the
right decision to verify (19). As shown in the figure, the agents with
both methods had a trend to make the right decision asymptotically,
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Fig. 4. The proportion of agents making the right decision.

whereas in the random system the agents’ actions had some fluctua-
tions.

Finally, we showed the social belief evolution with one outlier.
In the second experiment, using the same data model with o, = 1
and § = 1, we set the sequence of decisions to be a:40 all equal
to ones except that a1o = 0. Figure 4 showed the evolotion of
social beliefs of the deterministic and proposed methods conditioned
on this decision sequence. It can be seen that the social belief in
the deterministic method decreased from 0.9 to 0.4 just because one
decision a1 is in favor of . On the contrary, the proposed random
method was not so sensitive to the outlier decision.

0.9r
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&° 0.7f

—— proposed method, o 0=0

0.6t —e— deterministic method, a10=0

0.5¢

0'40 10 20 30 40
agent number

Fig. 5. The evolution of social belief with one outlier decision.

6. CONCLUSION

In this paper we proposed a Bayesian learning method for agents in
a sequential random decision making system. We modeled the ob-
servations of agents as Gaussian random variables with either zero
mean or a known value. The agents drew their decisions randomly
from their beliefs about the true state of nature. We proved that by
the proposed Bayesian learning method, both the social belief and
the action converged to the state of nature in probability. We demon-
strated the performance of the proposed method by Monte Carlo sim-
ulations and compared it with that of a deterministic method. We
showed that the system using random decision policy has a faster
convergence rate than the one with deterministic policy.
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