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ABSTRACT

We analyze two algorithms, viz. the affine projection algorithm

for sparse system identification (APA-SSI) and the quasi APA-SSI

(QAPA-SSI), regarding their stability and steady-state mean-squared

error (MSE). These algorithms exploit the sparsity of the involved

signals through an approximation of the l0 norm. Such approach

yields faster convergence and reduced steady-state MSE, as com-

pared to algorithms that do not take the sparse nature of the signals

into account. In addition, modeling sparsity via such approximation

has been consistently verified to be superior to the widely used l1

norm in several scenarios. In this paper, we show how to properly

set the parameters of the two aforementioned algorithms in order

to guarantee convergence, and we derive closed-form theoretical ex-

pressions for their steady-state MSE. A key conclusion from the pro-

posed analysis is that the MSE of these two algorithms is a monoton-

ically decreasing function of the sparsity degree. Simulation results

are used to validate the theoretical findings.

Index Terms— Affine projection, l0 norm, sparsity, sparse sys-

tem identification, adaptive filtering.

1. INTRODUCTION

Sparse signals and systems are reasonable models for a multitude of

real-world problems, including medical imaging, wireless commu-

nications, radar processing, just to mention a few examples [1, 2, 3].

Many of those applications rely on the proper identification of the

underlying sparse system in order to achieve their particular goals.

In this context, adaptive algorithms play a major role since they yield

online processing with reduced computational complexity as com-

pared to batch-based offline algorithms. The family of affine pro-

jection (AP) adaptive algorithms [4, 5] is a case in point since it

encompasses many online solutions commonly used in practice.

The first AP-based solutions that have addressed the problem

of sparse system identification (SSI) are the so-called proportion-

ate algorithms. Some examples of these algorithms, which do

not employ data reuse, are the proportionate normalized least-

mean-square (PNLMS) [6], the PNLMS++ [7], improved PNLMS

(IPNLMS) [8], improved µ-law PNLMS (IMPNLMS) [9], among

others [10] [11]. Regarding the algorithms that reuse previous data,
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we have the proportionate AP algorithm (PAPA) and the improved

PAPA (IPAPA) [12]. As compared to standard AP algorithms, those

proportionate solutions achieve higher convergence speed and lower

steady-state MSE by taking into account the sparsity of the system.

An alternative approach to exploit sparsity is the use of regu-

larization based on a sparsity-promoting norm, such as the l0 and

l1 norms.1 From the optimization viewpoint, this approach adds a

penalty function to the original objective function and a stochastic

gradient algorithm is derived, such as the zero-attracting AP algo-

rithm (ZA-APA) and reweighted ZA-APA (RZA-APA) [18], whose

penalty functions are related to the l1 norm of the parameter vector.

In [19], we proposed two new algorithms, namely the affine projec-

tion algorithm for sparse system identification (APA-SSI) and the

quasi APA-SSI (QAPA-SSI), whose penalty functions are approxi-

mations of the l0 norm of the parameter vector. As shown in [19],

APA-SSI and QAPA-SSI outperform the aforementioned competing

methods in many sparse scenarios and are able to exploit sparsity

even in scenarios with low sparsity degree in which the l1 norm

could not improve the performance of ZA-APA and RZA-APA in

comparison to that of the AP algorithm (APA).

After presenting the proposals in [19], some important theoret-

ical issues have been raised: (i) convexity of the resulting objective

function; (ii) stability of the proposed algorithms; and (iii) MSE

analysis of the algorithms. The first point, related to convexity, has

been addressed in [17] and is directly connected with the smoothness

of the function that approximates the l0 norm of the parameter vec-

tor. Addressing the second and third points is the main goal of this

paper. Indeed, we show how to set the free parameters of APA-SSI

and QAPA-SSI in order to yield a stable algorithm in the sense of not

drifting away from the actual (but unknown) sparse system impulse

response. In addition, we also present theoretical expressions for the

excess MSE (EMSE) of APA-SSI and QAPA-SSI which allow us to

draw important conclusions, such as the theoretical guarantees that

those algorithms perform better than the standard AP algorithm in

sparse scenarios.

Notation: For a given iteration k, the adaptive filter coefficient vec-
tor and input vector are denoted by w(k),x(k) ∈ R

N+1, respec-

tively. The desired signal, output signal, and error signal are respec-

tively denoted by d(k), y(k), e(k) ∈ R and the following relations

hold: y , xT (k)w(k) and e(k) , d(k) − y(k). For AP algo-

rithms, L ∈ Z+ previously used data are also employed together

with the current data. For these algorithms we define the input matrix

X(k) , [x(k) x(k − 1) . . . x(k − L)] ∈ R
(N+1)×(L+1), the de-

1In addition, set estimation [13, 14] and compressive sensing theories
have been combined leading to a different class of algorithms [15, 16, 17].
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sired vector d(k) , [d(k) d(k−1) . . . d(k−L)]T ∈ R
L+1, and the

error vector e(k) , d(k)−XT (k)w(k). In addition, ‖ · ‖2 = ‖ · ‖
is the Euclidean norm and ‖ · ‖0 is the l0 norm.

2. THE ALGORITHMS

In this section, we present the two algorithms proposed in [19], viz.

the APA-SSI and the QAPA-SSI. Both of them were devised for

identification of sparse systems and have an important feature: they

promote sparsity via function Fβ(w(k)), which is an approximation

of the l0 norm of w(k), where β ∈ R+ controls the trade-off be-

tween smoothness (low values of β) and quality of approximation

(high values of β) [17].
The optimization problem related to APA-SSI is:

minimize ‖w(k + 1)−w(k)‖22 + αFβ(w(k + 1))

subject to d(k)−X
T (k)w(k + 1) = 0, (1)

where α ∈ R+ is a parameter that determines the weight given to

the penalty function Fβ(w(k + 1)).
Thus, the APA-SSI is characterized by the following recursion:

w(k + 1) =w(k) + µX(k)S(k)e(k)

+ µ
α

2

[

X(k)S(k)XT (k)− I
]

fβ (w(k)) , (2)

in which S(k) ,
(
XT (k)X(k) + δI

)−1
, 0 < δ ≪ 1 is the regular-

ization factor, µ is the step size, and fβ(w(k)) , ∇Fβ(w(k)). On
the other hand, the updating rule of the QAPA-SSI is given by

w(k + 1) =w(k) + µX(k)S(k)e(k)− µ
α

2
fβ (w(k)) , (3)

which encompasses the l0-NLMS algorithm proposed in [20] and

can be regarded as an approximation of the APA-SSI recursion

where the term X(k)S(k)XT (k) is simply neglected. For more

details about the APA-SSI and QAPA-SSI, see [19].

Since this paper is mainly about theoretical analyses, the choice

of Fβ(w(k)) does not matter for further discussions and any func-

tion satisfying Fβ(w(k))
β→∞
−→ ‖w(k)‖0 is valid. Examples of Fβ

can be found in [19, 17].

3. ANALYSES

In this section, stability and MSE analyses of the APA-SSI and

QAPA-SSI are performed in a unified manner by considering the

following updating rule:

w(k + 1)=w(k)+µX(k)S(k)e(k)−µ
α

2
Pfβ (w(k)) , (4)

in which the APA-SSI and QAPA-SSI are obtained by making P =
P⊥

X , I−X(k)S(k)XT (k) and P = I, respectively.

3.1. Stability

Let us start by considering that the unknown sparse system can be

modeled as a linear time-invariant system with impulse response

w∗ ∈ R
N+1. The aim of this subsection is to characterize the values

of µ and α which ensure that w(k + 1) is closer to w∗ than w(k)
is. Thus, by defining

∆w(k) , w∗ −w(k) (5)

and the function f : R× R −→ R as

f(α, µ) , ‖∆w(k + 1)‖2 − ‖∆w(k)‖2, (6)

our aim is to determine the values of α and µ that make f(α, µ) < 0.
By expanding ‖∆w(k + 1)‖2 using (5) and (4), we obtain:

f(α, µ) = ‖Pfβ(w(k))‖2
µ2

4
︸ ︷︷ ︸

,a(k)

α2

+
(

µ∆w
T (k)Pfβ(w(k))− µ2

e
T (k)S(k)XT (k)Pfβ(w(k))

)

︸ ︷︷ ︸

,b(k)

α

+
(

µ2‖X(k)S(k)e(k)‖2−2µ∆w
T (k)X(k)S(k)e(k)

)

︸ ︷︷ ︸

,c(k)

, (7)

Since the algorithms should work properly even in the case

when sparsity is not exploited, i.e., when α = 0, then the condition

f(α, µ) < 0 becomes c(k) < 0, where

c(k) = µ2‖X(k)S(k)e(k)‖2 − 2µ∆w
T (k)X(k)S(k)e(k)

= µ2
e
T (k)S(k)e(k)− 2µ∆w

T (k)X(k)S(k)e(k)

= e
T (k)S(k)e(k)

[
µ2 − 2µ

]

= e
T (k)S(k)e(k)

︸ ︷︷ ︸

>0

[µ(µ− 2)] . (8)

In the second equality we used the symmetry of S(k) and consid-

ered that S(k) =
(
XT (k)X(k)

)−1
, i.e., we considered δ = 0

since it was artificially introduced to prevent numerical issues due

to matrix inversion. In the third equality we considered a noise-

less scenario: in such kind of scenario d(k) = XT (k)w∗ (with-

out additive measurement noise) and y(k) = XT (k)w(k) so that

e(k) = d(k)−y(k) = XT (k)∆w(k). In the last equality we used
the fact that S(k) is positive definite so that eT (k)S(k)e(k) > 0.
Therefore, in order to have c(k) < 0 we must use 0 < µ < 2.

Now, considering that µ is appropriately set so that c(k) < 0,
we may think of (7) as a function of α only. For a fixed µ, f(α, µ)
is a second-order polynomial on α whose discriminant d(k) is

d(k) = b2(k)
︸ ︷︷ ︸

≥0

−4 a(k)
︸︷︷︸

≥0

c(k)
︸︷︷︸

<0

≥ 0, (9)

where the above inequality follows from the definitions of a(k) and
b(k), and the choice of µ that guarantees c(k) < 0. Therefore, there
exist two roots, viz. αmin(k) and αmax(k), and α should be chosen

as αmin(k) ≤ α ≤ αmax(k).
2 In addition, notice that α = 0 is

always a valid solution because f(0, µ) = c(k) < 0 for 0 < µ < 2.
Up to this point, we have addressed the choice of α and µ from

the theoretical viewpoint. In practice, when noise is present the

range of µ should be reduced to 0 < µ < 1 so that noise enhance-

ment is mitigated and condition f(α, µ) < 0 is met. In addition,

since we are assuming that the unknown systemw∗ is sparse, then it

makes no sense to use negative values of α, thus 0 ≤ α < αmax(k),
for every k. Therefore, α should be a nonnegative real number with

small amplitude (usually, α ≪ 1).

2In practice, a(k) > 0 due to floating point arithmetic, implying
αmin(k) 6= αmax(k). Indeed, after convergence none of the entries of
w(k) will be exactly equal to 0 and, therefore, none of the entries of
fβ(w(k)) is 0. Thus, for the two definitions of P that interest us we
have Pfβ(w(k)) 6= 0. In addition, when Pfβ(w(k)) = 0, we have
a(k) = b(k) = 0, implying that any value of α can be used.
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3.2. Steady-state MSE

In this subsection, we derive an expression for the steady-state

MSE of the two involved algorithms using the energy-conservation

method [21]. Due to lack of space, several mathematical derivations

are skipped so that we can focus on the resulting expressions, their

interpretations and relationships with the analysis presented in [22].

Let us start by subtracting w∗ from both sides of (4) so that

∆w(k + 1) = ∆w(k)− µX(k)S(k)e(k) + µ
α

2
Pfβ (w(k)) ,

(10)

which, after the premultiplication by XT (k), gives us

ǫ̃(k) = ẽ(k)− µR(k)S(k)e(k) + µ
α

2
X

T (k)Pfβ (w(k)) , (11)

where R(k) , XT (k)X(k) is assumed to be full rank, and

ǫ̃(k) = X
T (k)∆w(k + 1) = ǫ(k)− n(k), (12)

ẽ(k) = X
T (k)∆w(k) = e(k)− n(k) (13)

are the noiseless a posteriori error vector and the noiseless a priori er-

ror vector, respectively. Thus, after premultiplying (11) byR−1(k),
we end up with

µS(k)e(k) =R
−1(k) [ẽ(k)− ǫ̃(k)]

+ µ
α

2
R

−1(k)XT (k)Pfβ (w(k)) , (14)

which can be employed in (10), thus allowing one to obtain (after

some lengthy manipulations) the expression

∆w(k+1)+X(k)R−1(k)ẽ(k)=∆w(k)+X(k)R−1(k)ǫ̃(k)

+µ
α

2

[

I−X(k)R−1(k)XT (k)
]

Pfβ (w(k)) . (15)

Therefore, by evaluating the energies at both sides of (15), one

can prove the following relation:

‖∆w(k + 1)‖2 + ẽ
T (k)R−1(k)ẽ(k) = ‖∆w(k)‖2

+ǫ̃
T (k)R−1(k)ǫ̃(k) + (µα)∆w

T (k)P̄Pfβ (w(k))

+
(µα)2

4
f
T
β (w(k))PT

P̄Pfβ (w(k)) , (16)

where P̄ , I − X(k)R−1(k)XT (k). It is worth noticing that, for

the two kinds of matrixP corresponding to the APA-SSI and QAPA-

SSI, the following relations hold: (i) P̄P = P̄ and (ii) PT P̄P =
P̄. Thus, applying such relations, the expected value operator, and

assuming that the algorithms have reached steady-state so that the

relation E
[
‖∆w(k + 1)‖2

]
= E

[
‖∆w(k)‖2

]
is valid, then (16)

becomes

E
[

ẽ
T (k)R−1(k)ẽ(k)

]

= E
[

ǫ̃
T (k)R−1(k)ǫ̃(k)

]

+ (µα)E
[

∆w
T (k)P̄fβ (w(k))

]

+
(µα)2

4
E
[

f
T
β (w(k)) P̄fβ (w(k))

]

. (17)

After many manipulations, we obtain for the APA-SSI

(2− µ)E
[

ẽ
T (k)R−1(k)ẽ(k)

]

= µE
[

n
T (k)S(k)n(k)

]

+ αE
[

∆w
T (k)P̄fβ (w(k))

]

, (18)

whereas for the QAPA-SSI we have

(2− µ)E
[

ẽ
T (k)R−1(k)ẽ(k)

]

= µE
[

n
T (k)S(k)n(k)

]

+ αE
[

∆w
T (k)fβ (w(k))

]

. (19)

In order to continue the derivation of the EMSE, we shall as-

sume that, in the steady-state, X(k) is independent of ẽ(k) and

E
[
ẽ(k)ẽT (k)

]
= E

[
|ẽ0(k)|

2
]
S1, where ẽ0(k) is the first entry

of ẽ(k), S1 = diag{
[
1, (1− µ)2, . . . , (1− µ)2L

]
}, and we as-

sumed that α < µ, so that the terms containing factors of αµ and

µ2 were neglected. Those assumptions are inspired by a similar pro-

cedure used in [22]. Now we can approximate the expected values

of (18) and (19) as follows:

(2− µ)E
[

ẽ
T (k)R−1(k)ẽ(k)

]

=

(2− µ)tr{E
[

ẽ(k)ẽT (k)R−1(k)
]

} =

(2− µ)E
[
|ẽ0(k)|

2] tr{S1E
[
R

−1(k)
]
}. (20)

In the same way, denoting the noise variance by σ2, we can

rewrite the first term of the right-hand side of (18) or (19) as

µE
[

n
T (k)S(k)n(k)

]

= µσ2tr{E [S]}. (21)

Replacing (20) and (21) in (18) and (19), we can obtain the

EMSE value, E
[
|ẽ0(k)|

2
]
, for the APA-SSI algorithm as

E
[
|ẽ0(k)|

2] =
µσ2tr{E [S]}+ αE

[
∆wT (k)P̄fβ (w(k))

]

(2− µ)tr{S1E [R−1(k)]}
,

(22)

and for the QAPA-SSI as

E
[
|ẽ0(k)|

2] =
µσ2tr{E [S]}+ αE

[
∆wT (k)fβ (w(k))

]

(2− µ)tr{S1E [R−1(k)]}
. (23)

Now, if one compares (22) and (23) with the results described

in [22], one can conclude that:

EMSE = ‘EMSE of AP’+ ‘Sparsity Modelling Term’, (24)

where the first term ‘EMSE of AP’, given by µσ2tr{E [S]}/(2 −
µ)tr{S1E

[
R−1(k)

]
}, is the same expression that was derived

in [22]. As for the ‘Sparsity Modelling Term’, it models the way the

particular algorithm takes sparsity into account.

In order to analyze the role of the ‘Sparsity Modelling Term’, let

us first consider the QAPA-SSI. The argument of the expected value

of αE
[
∆wT (k)fβ (w(k))

]
(see (23)) can be written as

∆w
T (k)fβ (w(k)) =

N∑

n=0

∆wn(k)fβ (wn(k)) , (25)

where ∆wn(k) = w∗,n − wn(k) and fβ(wn(k)) ,
∂Fβ(w(k))

∂wn(k)
are

the nth components of ∆w(k) and fβ(w(k)), respectively. When

dealing with sparse scenarios, two possibilities can occur: (i) if

w∗,n 6= 0, then assuming β is properly set (i.e., Fβ(·) is a good

approximation of ‖ · ‖0) [17], then there is no correction to be ap-

plied to the standard AP recursion, so that we have fβ(wn(k)) ≈ 0
after convergence since wn(k) is likely to be nonzero as well. In

other words, our sparsity model does not affect these coefficients
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Table 1. Steady-state MSE (dB): experimental vs. theoretical.
APA-SSI with L = 0 QAPA-SSI with L = 0 APA-SSI with L = 2 QAPA-SSI with L = 2

Ms µ = 0.05 µ = 0.1 µ = 0.05 µ = 0.1 µ = 0.05 µ = 0.1 µ = 0.05 µ = 0.1
(%) Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

0 -19.85 -19.88 -19.75 -19.77 -19.85 -19.88 -19.75 -19.77 -19.61 -19.88 -19.25 -19.73 -19.61 -19.88 -19.25 -19.73
20 -19.90 -19.91 -19.79 -19.82 -19.90 -19.91 -19.79 -19.82 -19.67 -19.92 -19.32 -19.80 -19.68 -19.92 -19.33 -19.81
40 -19.92 -19.93 -19.84 -19.87 -19.92 -19.93 -19.84 -19.87 -19.71 -19.96 -19.42 -19.88 -19.72 -19.97 -19.44 -19.89
60 -19.94 -19.96 -19.90 -19.92 -19.94 -19.96 -19.90 -19.92 -19.77 -20.00 -19.50 -19.95 -19.79 -20.02 -19.53 -19.98
80 -19.97 -19.98 -19.94 -19.97 -19.97 -19.99 -19.94 -19.97 -19.82 -20.05 -19.58 -20.02 -19.84 -20.07 -19.62 -20.06

and the component ∆wn(k)fβ (wn(k)) ≈ 0; (ii) if w∗,n = 0,
then ∆wn(k) = −wn(k) = −sign(wn(k))|wn(k)|. In addition,

as shown in [19], fβ(wn(k)) has the general form sign(wn(k))γ,
where γ is a positive constant. Therefore, ∆wn(k) and fβ(wn(k))
have opposite signs, thus leading to ∆wn(k)fβ (wn(k)) < 0. As

a result, the sum in (25) contains only (approximately) zero or

negative terms, thus implying that ∆wT (k)fβ (w(k)) ≤ 0. Note

that the equality is achieved for dispersive impulse responses in

which ‖w∗‖0 = N + 1, i.e., no null component, which means

that the QAPA-SSI achieves the same steady-state MSE of the stan-

dard AP algorithm for non-sparse environments. Furthermore, as

‖w∗‖0 decreases toward 0, more negative components of the form

∆wn(k)fβ (wn(k)) appear in (25), which means that the steady-

state MSE of the QAPA-SSI decreases with the sparsity degree.

The same conclusions seem to be valid for the APA-SSI,

as the simulation results indicate. However, it requires a much

more involving proof. The numerator of the ‘Sparsity Modelling

Term’ of the APA-SSI can be rewritten as a sum of two terms:

αE
[

∆wT (k)fβ (w(k))
]

+αE
[

∆wT (k)X(k)R−1(k)XT (k)fβ (w(k))
]

,

where the first term is the same as that explained in (25). Since the

rank of X(k)R−1(k)XT (k) is L + 1 at most, then only L + 1
components out of N + 1 entries of vectors ∆w(k) and fβ (w(k))
are considered in the second term. Hence, intuitively, the first term

seems to be dominant.

Based on the previous interpretations for the EMSE expressions,

it is very interesting to observe that what matters to the MSE is the

number of coefficients equal to 0, and not how they are distributed

along the vector w∗. In other words, what matters is the sparsity

degree. Indeed, in [17] we show simulation results that confirm this

observation.

Finally, we would like to mention that the expressions in (22)

and (23) are only for theoretical purposes because one cannot com-

pute them in practice. Indeed, such expressions depend implicitly on

w∗, which is not known, and on the expected values related to the

other variables, which might be unknown beforehand.

4. SIMULATION RESULTS

In this section, we provide simulation results aiming at validating the

EMSE expressions in (22) and (23) and also to illustrate the steady-

state MSE performance of the APA-SSI and QAPA-SSI as the degree

of sparsity varies. Therefore, we now introduce our measure of the

sparsity degree:

Ms ,
(N + 1)− ‖w∗‖0

(N + 1)
× 100, (26)

i.e.,Ms ∈ [0, 100) represents the percentage of coefficients that are
equal to 0.

The experiments consist in identifying the impulse response of

an unknown system w∗, which is modelled as an FIR filter of order

15. In the 0th experiment we have all 16 taps of w∗ equal to 1, i.e.,
Ms = 0. In the nth experiment, n ∈ {1, 2, . . . , 15}, we turn n
coefficients of w∗ to 0, whereas 16 − n coefficients remain equal

0 20 40 60 80 100
−20

−19
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−16

−15

Degree of Sparsity

M
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E
 [

d
B

]

 

 

APA−SSI (experimental)

QAPA−SSI (experimental)

APA−SSI (theoretical)

QAPA−SSI (theoretical)
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L=3

L=2

L=0

Fig. 1. Steady-state MSE vs. Ms with µ = 0.6. For the sake of

clarity, the APA is represented in dotted line only for L ∈ {0, 1}.

to 1. The input signal is drawn from a zero-mean Gaussian distri-

bution with variance equal to 1. The additive measurement noise is

uncorrelated with the input signal and is assumed to be white and

Gaussian with variance σ2 = 10−2.

As for the adaptive filter, its order is alsoN = 15, it is initialized
as w(0) = 0, and the algorithm parameters are set as: α = 10−3,

β = 5, δ = 10−12, and µ ∈ {0.05, 0.1, 0.6}.
The results shown in Fig. 1 and Table 1 validate the theoretical

steady-state MSE expressions as well as they corroborate our previ-

ous observations/interpretations. Indeed, it is clear from such results

that the APA-SSI and QAPA-SSI can reduce their steady-state MSEs

as the degree of sparsity increases, for a fixed µ. Alternatively, for
a desired steady-state MSE, these algorithms can use a higher value

of µ, thus increasing convergence speed. In addition, as it happens

with the APA, the accuracy of the theoretical expressions decreases

as L increases [22].

It is worth noticing that forMs = 0%, the APA-SSI and QAPA-

SSI exhibit similar performance, as compared to the APA, but even

when Ms is low, these algorithms can still benefit from this low

sparsity degree, as these results indicate. This is a very important

feature. For instance, whenMs ≈ 50%, AP-based algorithms using

the l1 norm to model sparsity did not exhibit any improvement as

compared to the AP algorithm, as shown in [19].

We also observed that, the MSE curves of APA-SSI and QAPA-

SSI decrease slower with Ms when L increases toward N . Such

behavior is theoretically explained by the fact that the term ’EMSE

of AP’ increases with L, thus becoming dominant.

5. CONCLUSION

In this paper, we analyzed two important features of the APA-SSI

and QAPA-SSI: stability and steady-state MSE. Indeed, we ex-

plained how to set their parameters µ and α in order to guarantee

convergence, and we derived theoretical expressions for their EMSE.

Such expressions are composed of two terms: the EMSE of the AP

algorithm and a term that takes the sparsity degree into account.
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