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ABSTRACT

Beamformer-assisted acoustic echo cancelers have raised a lot of in-

terest lately. The same performance can be obtained with a reduced

length acoustic echo canceler (AEC) as the beamformer (BF) per-

forms spatial cancellation. Structures that jointly optimize the BF

and the AEC coefficients are preferred in order to exploit syner-

gies. Analytical models have been already derived for the behav-

ior of the direct form implementation of such systems adapted using

the constrained least-mean square (CLMS) algorithm. This work

extends the analysis to the popular generalized sidelobe canceler

(GSC) structure, while allowing for a positive definite step-size ma-

trix. Analytical models are derived for the mean and mean-square

behaviors of the adaptive coefficients. Simulation results are shown

to be in excellent agreement with the performance predicted by the

theory.

Index Terms— Acoustic echo cancellation, microphone arrays,

adaptive filtering, beamforming, statistical analysis

1. INTRODUCTION

Acoustic echoes arise when a microphone picks up the signal radi-

ated by a loudspeaker and its reflections at the borders of a reverber-

ant environment. Without a handset to provide attenuation between

loudspeaker and microphone, intelligibility and listening comfort

degrade [1, 2]. Typical room reverberation times require adaptive

acoustic echo cancelers with very long responses [1, 2]. Fast con-

vergence and satisfactory echo cancellation are hard to obtain under

these conditions [1–4].

The desired speech signal is usually corrupted by speech from

other talkers, noise and echoes in an acoustic environment. Spa-

tial filtering (beamforming) can help attenuate interfering signals in

directions other than the direction of arrival (DOA) of the desired

speaker. Beamformers (BF) have limited echo suppression capacity

due to limits in the array directivity [5] and the large number of mi-

crophones necessary to suppress all reflections outside the desired

DOA [6].

Acoustic echo cancellation solutions in which BFs and acoustic

echo cancelers (AECs) have complementary functions have raised a

lot of interest recently [7–15]. BFs and AECs contribute by different

means to reduce the residual echo. Hence, using both techniques in

a synergistic way can improve the acoustic echo cancellation perfor-

mance. BFs an AECs are usually combined by means of two basic

structures [7]. The AEC first structure (AEC-BF) employs one AEC
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per microphone [15]. The BF then processes the AEC outputs for

spatial filtering. It requires several long AECs, leading to very high

computational costs [15]. Moreover, signals not in the desired DOA

must be treated as double talk, complicating the design. The BF first

(BF-AEC) structure does the spatial filtering first, leaving basically

the echo in the desired DOA to be canceled by a single AEC [13,14].

Despite the possibilities of combined BF and AEC acoustic echo

cancellation systems, we find only few analyses of their transient be-

havior in the literature. The AEC-BF structure has been studied for

the acoustic echo cancellation problem in [15] and for the acoustic

feedback cancellation in [16]. A stochastic model has been derived

using the power transfer function method for the case of a fixed BF,

where just the AEC is adapted. More recently [13, 14], the perfor-

mance of a system where BF and AEC are jointly adapted using

equal and fixed step-sizes was analyzed. The analysis in [13,14] con-

sidered a beamformer implemented in the direct form. The derived

analytical model was shown to accurately predict the adaptive sys-

tem behavior and corroborated previous experimental findings that

the same cancellation performance of a single-microphone AEC can

be achieved with a shorter AEC when the possibility of spatial fil-

tering is available [14, 17]. The model, based on the equivalence

to a conventional LCMV optimization, allows the use of previous

analytical results [18, 19]. Another very popular beamformer imple-

mentation employs the generalized sidelobe canceler (GSC) struc-

ture [8, 10, 12], which in certain situations leads to implementations

with lower computational complexity than the direct form.

This work extends the analysis in [13,14] to the study of the tran-

sient behavior of the jointly optimized BF-AEC structure in the GSC

form. We formulate the joint optimization as a single constrained

optimization problem, what simplifies the statistical analysis. More-

over, the analysis is extended to the case of a positive-definite step-

size matrix [20–22]. The incorporation of this extra flexibility to

the model is particularly interesting for BF-assisted echo cancelers,

as their AEC adaptation control logic stops AEC adaptation during

double-talk periods, while the BF continues adapting. In [22] it is

shown that, in the absence of noise perturbations, a LMS algorithm

with matrix step-size is equivalent to a single step LMS on a trans-

formed space. The same idea is used in our convergence analysis.

In this paper, plain lowercase or uppercase letters denote scalars,

lowercase boldface letters denote column vectors and uppercase

boldface letters denote matrices.

2. PROBLEM STATEMENT

Fig. 1 shows the BF-AEC structure, with M echo impulse response

vectors hm of length Nh, M microphone signals xm[n], one adap-

tive wideband beamformer composed of M filters bm[n] of length
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NBF and an adaptive AEC filter ĥ[n] of length NAEC. We assume

responses hm constant for mathematical tractability.

u[n] y[n] +
+ + +

+

+

h0[n] b0[n]

hM−1[n] bM−1[n]

eM−1[n] xM−1[n]

e0[n] x0[n]

r0[n]

rM−1[n]

ĥ[n]

d[n]

ŷ[n]

−1

Fig. 1. BF-AEC system in the direct form structure [13].

2.1. Signal Model

The mth microphone signal xm[n] is the sum of a near-end sig-

nal rm[n] and an echo em[n]: xm[n] = em[n] + rm[n]. Each

signal rm[n] is composed of local speech, local interferences and

random noise. The echo em[n] results from the filtering of u[n]
by hm. We define the microphone array snapshot xs[n] at time n

as xs[n] = [x0[n] x1[n] · · · xM−1[n]]
T and the combined

beamformer input regressor as [18]

xb[n] =
[

x
T
s [n]x

T
s [n− 1] · · · xTs [n− (NBF − 1)]

]T

. (1)

Defining the vector bsℓ [n] of the ℓth components of all vectors

bm[n], m = 0, . . . ,M − 1, at time n as

bsℓ [n] =
[

b0ℓ [n] b1ℓ [n] · · · bM−1ℓ [n]
]T

, ℓ = 0, . . . , NBF − 1

we write the beamformer output y[n] =
∑NBF−1
ℓ=0 xTs [n − ℓ]bsℓ [n].

Now, defining the stacked beamformer weight vector

b[n] =
[

b
T
s0
[n] b

T
s1
[n] · · · b

T
sNBF−1

[n]
]T

(2)

and using (1), we write y[n] as the linear filtering y[n] = bT [n]xb[n].

Next, defining the AEC response vector

ĥ[n] =
[

ĥ0[n] ĥ1[n] · · · ĥNAEC−1[n]
]T

(3)

and the AEC input vector uĥ[n] = [u[n] · · ·u[n− (NAEC − 1)]]T

yields ŷ[n] = ĥ
T
[n]uĥ[n]. The residual echo is d[n] = y[n] −

ŷ[n]. Finally, defining the combined input and adaptive coefficient

vectors s[n] = [−uĥ
T [n] xb

T [n]]T and w[n] = [ĥ
T
[n] bT [n]]T ,

respectively, we have

d[n] = −uTĥ [n]ĥ[n] + x
T
b [n]b[n] = s

T [n]w[n]. (4)

2.2. Performance Surface

The mean output power (MOP) performance surface J is defined as

the mean value of d2[n] conditioned onw[n] = w. From (4),

J = E{d2[n]|w[n] = w} = E
{

w
T
s[n]sT [n]w

}

= wT
Rssw. (5)

where Rss = E{s[n]sT [n]} is the input autocorrelation matrix. A

set of Nf linear constraints on the beamformer coefficients imple-

ments the spatial filtering. Usually, an MNBF × Nf constraint ma-

trixC and an Nf × 1 response vector f jointly define the frequency

response in the desired DOA [18, 23].

To formulate the linear constraints as a function of the combined

coefficient vector, we define the extended constraint matrix [10]

Ce =
[

0Nf×NAEC
C
T
]T

. (6)

Finally, the joint optimization problem can be formulated as

wopt = argmin
w
w
T
Rssw (7a)

subject toC
T
e w = f (7b)

2.3. Implementation Using the GSC Form

In the direct form structure of Fig. 1, the solution to (7) is split into

two orthogonal components

w = wfeas +w⊥ (8)

where wfeas satisfies (7b), and w⊥ is in the complementary or-

thogonal space of Ce. For instance, in [13, 18] the solutions are

set by assigning w⊥ = P ew and wfeas = Ce(C
T
e Ce)

−1f =
[01×NAEC

ξT ]T where

P e = (INAEC+MNBF
−Ce(C

T
e Ce)

−1
C
T
e )

=

[

INAEC
0NAEC×M.NBF

0M.NBF×NAEC
P

]

(9)

with P = IM.NBF
−C(CTC)−1CT and ξ = C(CTC)−1f .

In the GSC form [24], the dashed square of Fig. 1 is replaced by

the dashed square of Fig. 2. Feasible solutions to (7) are decomposed

+

_

d[n]
q
e

Be ψ[n]

s[n]

Fig. 2. BF-AEC system in the GSC configuration.

as [24]

w = qe −Beψ (10)

where qe is any feasible solution to (7b), Be is a full column-rank

(NAEC + MNBF) × Nψ-dimensional blocking matrix orthogonal

to Ce (CT
e Be = 0), ψ is an Nψ-dimensional vector and Nψ =

NAEC +MNBF −Nf . The minimum norm solution to (7b) is qe =
Ce(C

T
e Ce)

−1f . Both P e andBe have the same range (orthogonal

to that ofCe).
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2.3.1. Optimal Solution

As CT
e Be = 0,w in (10) satisfies (7b) for any ψ, and (7) becomes

an unconstrained optimization problem in ψ with solution

ψopt = argmin
ψ
q
T
e Rssqe − 2ψTBT

e Rssqe +ψ
T
Rblocψ (11)

whereRbloc = B
T
e RssBe denotes the blocked input autocorrelation

matrix, and from (10) wopt = qe − Beψopt. Setting the gradient

of (11) in respect to ψ equal to the null vector yields

ψopt = R
−1
blocB

T
e Rssqe. (12)

3. STOCHASTIC GRADIENT ADAPTIVE SOLUTION

Applying a modified stochastic algorithm to search for the optimal

solution (11) yields the weight update equation [24]

ψ[n+ 1] = ψ[n] +MB
T
e s[n]d[n]. (13)

This is Eq. (30) of [24] with one important modification. We have

added a positive-definite step-size matrix M that can be used to

control the rate of convergence and the steady-state performance of

the algorithm [20–22]. The inclusion of this matrix is important be-

cause, contrary to the study in [24], the present analysis of the GSC-

based structure includes the operation of both the BF and the AEC.

In practical systems there exists a control logic that usually stops the

AEC when double-talk occurs, while the BF continues to be adapted.

Hence, BF and AEC are not always being adapted in a BF-assisted

echo canceler. By including the step-size matrix M in (13) we con-

sider the possibility of using different step-sizes for the AEC and

for the BF. Hence, the resulting model should be able to predict the

system behavior under different possible adaptation modes.

3.1. Weight Error Vector

Define the weight error vector v[n] = w[n]−wopt. From (10),

v[n] = qe −Beψ[n]−
(

qe −Beψopt

)

= −Beϑ[n] (14)

where ϑ[n] = ψ[n] − ψopt denotes the weight error vector of the

unconstrained filter conditioned on Be and qe. From (14), v[n] is

in the range of Be. Hence, v[n] is completely determined by ϑ[n]
conditioned onBe. We then study the behavior of ϑ[n].

Subtracting ψopt from both sides of (13), using (4) withw[n] =
v[n]+wopt and (10) we obtain a recursive update equation for ϑ[n]:

ϑ[n+ 1] =(INψ −MB
T
e s[n]s

T [n]Be)ϑ[n]

+MB
T
e s[n]s

T [n]wopt.
(15)

4. STATISTICAL ANALYSIS

4.1. Simplifying Assumptions

We now study the behavior of BF-assisted echo canceler using (13)

under the following typical simplifying assumptions:

A1 s[n] is stationary, zero-mean and Gaussian;

A2 u[n] and r[n] are statistically independent;

A3 Rss is positive-definite, and both Ce and Be have full column

rank;

A4 Statistical dependence ofBT
e s[n]s

T [n]Be andψ[n] can be ne-

glected;

A5 The desired DOA does not change during adaptation.

Though not always valid in practice, these assumptions make anal-

ysis viable and frequently lead to results that retain sufficient in-

formation to serve as reliable design guidelines [4, p. 315],[8, 10].

Simulation results will confirm their reasonability for this analysis.

4.2. Mean Weight Error Vector Behavior

Taking the expected value of (15) under A4 and using (10) and (12)

leads to E{BT
e s[n]s

T [n]wopt} = 0Nψ×1 and

E{ϑ[n+ 1]} = (INψ −MRbloc)E{ϑ[n]}. (16)

Hence, the mean weights converge asymptotically if all eigenvalues

of MRbloc are inside the unit circle. In the following we study the

second moment behavior of the weights [3].

4.3. Correlation Matrix of ϑ[n]

Post-multiplying (15) by its transpose, taking the expected value,

using A1–A5, the Gaussian moment factoring theorem [4, 25], and

E{BT
e s[n]s

T [n]wopt} = 0Nψ×1 yields

Rϑϑ[n+ 1] = Rϑϑ[n]−MRblocRϑϑ[n]−Rϑϑ[n]RblocM

+ [Jmin + tr(RblocRϑϑ[n])]MRblocM

+ 2MRblocRϑϑ[n]RblocM (17)

whereRϑϑ[n] = E{ϑ[n]ϑT [n]}.

4.4. Mean Output Power

The MOP is given by J [n] = Jmin + tr(Rvv[n]Rss) [13] where

Rvv[n] = E{v[n]vT [n]}. AsRvv[n] = BeRϑϑ[n]B
T
e from (14),

J [n] = Jmin + tr(Rϑϑ[n]Rbloc) (18)

5. CONVERGENCE ANALYSIS

Classical convergence analysis of (17) would project Rϑϑ[n] into

the eigenspace of Rbloc and study the convergence of the diagonal

entries of the transformed matrix [3]. The presence of M however

requires a different approach, as (17) is not diagonalizable by the

same projection since MRbloc 6= RblocM [26, p. 558]. Never-

theless, it is still possible to diagonalize both M and Rbloc through

contragradient diagonalization [26, p. 465],[27, p. 466]. As M is

positive definite, Cholesky decomposition yields M = LLT with

L non-singular. Then, we can transform the vector space into ξ[n] =
L−1ϑ[n], Rmod = LTRblocL, and Rξξ[n] = L−1Rϑϑ[n]L

−T .

Pre-multiplying (17) by L−1 and post-multiplying by L−T yields

Rξξ[n+ 1] =Rξξ[n]−RmodRξξ[n]−Rξξ[n]Rmod

+Rmod[Jmin + tr(Rϑϑ[n]Rbloc)]

+ 2RmodRξξ[n]Rmod (19)

whereRmod is symmetric and positive-definite, hence diagonalizable

asRmod = QΛQT withQTQ = INψ and

Λ = diag(λ1, λ2, . . . , λNψ ). (20)

Pre-multiplying (19) byQT and post-multiplying byQ results in

Rξξ[n+ 1] = Rξξ[n]−ΛRξξ[n]−Rξξ[n]Λ

+Λ(Jmin + tr(Rξξ[n]Λ)) + 2ΛRξξ[n]Λ (21)
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where Rξξ[n] = Q
TRξξ[n]Q.

Rξξ[n] is an autocorrelation matrix. Then [Rξξ[n]]
2
i,j ≤

[Rξξ[n]]i,i[Rξξ[n]]j,j , [Rξξ[n]]i,i ≥ 0 [25, p. 251], [28], and con-

vergence of (21) can be studied observing only the diagonal elements

of Rξξ[n]. Let [ν[n]]i = [Rξξ[n]]i,i, i = 1, . . . , Nψ , denote the

vector of diagonal entries of Rξξ[n] and λ = [λ1, λ2, . . . , λNψ ]
T

be the vector of the eigenvalues ofRmod. Then, from (21)

[ν[n+ 1]]i = [ν[n]]i − 2λi[ν[n]]i + 2λ2
i [ν[n]]i

+ λiλ
T
ν[n] + λiJmin (22)

and

ν[n+ 1] = Φν[n] + Jminλ (23)

where tr(ΛRξξ[n]) = λ
Tν[n], Φ = diag(ρ1, ρ2, . . . , ρNψ )+λλ

T

and ρk = (1− λk)
2 + λ2

k. The solution to (23) is [29]

ν[n] = Φ
n
ν[0] + Jmin

n−1
∑

j=0

Φ
j
λ. (24)

Using (24) we now study the stability conditions and the steady-state

behavior of (13).

5.1. Stability

Convergence of (24) is determined exclusively by the eigenvalues

λΦ of Φ [29], which are real and positive. From Gershgorin’s theo-

rem [30], a sufficient condition for all λΦ < 1 is

tr(Rmod) = tr(MRbloc) <
2

3
(25)

5.2. Steady State Behavior

When (25) holds, (23) will converge such that limn→∞ ν[n+ 1] =
limn→∞ ν[n] = ν[∞]. Doing as in [4, pp. 326–327] yields

J [∞] = Jmin



1 +

1
2

∑Nψ
i=1

λi
1−λi

1− 1
2

∑Nψ
i=1

λi
1−λi



 (26)

where λi is the ith eigenvalue in λ. For max{λi} ≪ 1 and 1−λi ≈
1 for all i and (26) reduces to

J [∞] ≈ Jmin

[

1 +
1
2

tr(MRbloc)

1− 1
2

tr(MRbloc)

]

. (27)

Further, if tr(MRbloc) ≪ 2, (27) yields the simpler approximation

J [∞] ≈ Jmin

[

1 + 1
2

tr(MRbloc)
]

.

6. DIFFERENT BF AND AEC STEP SIZES

So far M has been required to be positive definite. One interesting

choice of M and Be is one that permits adaptations of the BF and

the AEC using different step sizes. One may choose

Be =

[

−INAEC
0NAEC×(MNBF−Nf )

0MNBF×NAEC
B

]

(28)

where B is an MNBF × (MNBF − Nf ) matrix such that BTC =
0(MNBF−Nf )×Nf and rank(B) = MNBF −Nf , and

M =

[

µAECINAEC
0NAEC×(MNBF−Nf )

0(MNBF−Nf )×NAEC
µBF IMNBF−Nf

]

. (29)

Then, (13) becomes

ĥ[n+ 1] = ĥ[n] + µAECd[n]uĥ[n] (30a)

ψb[n+ 1] = ψb[n] + µBFB
T
x[n]d[n] (30b)

where ψb[n] contains the last MNBF −Nf elements of ψ[n]. This

is a low complexity implementation that allows to study the behavior

of the system under different control logic states.

Using (28) and (29) in (25) yields

µAEC tr(Ru
ĥ
u

ĥ
) + µBF tr(BT

Rxbxb
B) <

2

3
(31)

whereRu
ĥ
u

ĥ
= E{uĥ[n]u

T

ĥ
[n]} andRxbxb

= E{xb[n]x
T
b [n]}.

7. SIMULATION RESULTS

For model validation, consider a unit power first order autorregres-

sive AR1(-0.9) far-end signal u[n] = 0.9u[n − 1] + z[n], 2 mi-

crophones, h0 and h1 with 500 taps each, generated according to

the model in [1]. The desired DOA was assumed orthogonal to

the microphone array. The noises r0[n] and r1[n] were zero-mean

white Gaussian with variance 10−2. The adaptive BF was designed

with NBF = 16, linear phase, and all-pass frequency response with

Nf = 16. The AEC used NAEC = Nh + NBF − 1. Fig. 3 shows

the predicted and simulated transient MOP. We tested 2 scenarios:

[µAEC , µBF ] = [2.6191 × 10−4, 0.0262] and [µAEC , µBF ] =
[3.9840×10−4, 0.0028]. Fig. 3 shows excellent agreement between

theory and predictions in both cases. Counterintuitively, the results

show That a larger convergence speed does not necessarily imply a

higher steady-state error.

0 1 2 3 4

x 10
5

−25

−20

−15

−10

−5

0

n

E
{d

2
[n

]}
d
B

 

 

MC simulation

model prediction

[µAEC, µBF] = [2.6191× 10
−4

, 0.0262]

[µAEC, µBF]=[3.9840×10
−4

, 0.0028]

Fig. 3. Monte-Carlo simulation results for 20 runs with AR1(-0.9)

input (M = 2, Nh = 500, NBF = 16 NAEC = Nh +NBF − 1).

8. CONCLUSIONS

This paper has studied the performance of the adaptive GSC beam-

forming for the general case of a positive definite step size matrix.

The new analysis can be used to predict the behavior of the GSC-

based BF-AEC system in different control logic states. It permits

the study of the interesting case of using a blocking matrix proposed

in [10] and a diagonal step-size matrix, for which the BF and AEC

can use different step sizes. Simulation results have shown excellent

agreement between theory and simulations.
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[2] E. Hänsler and G. Schmidt, Acoustic Echo and Noise Control:

A Practical Approach, Wiley-Interscience, 2004.

[3] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and

adaptive signal processing: spectral estimation, signal mod-

eling, adaptive filtering, and array processing, McGraw-Hill,

New York, NY, USA, 2000.

[4] S. Haykin, Adaptive Filter Theory (2nd Edition), Prentice Hall,

Sep. 1993.

[5] B.D. Van Veen and K.M. Buckley, “Beamforming: a versatile

approach to spatial filtering,” ASSP Magazine, IEEE, vol. 5,

no. 2, pp. 4 –24, Apr. 1988.

[6] H. L. Van Trees, Optimum Array Processing (Detection, Esti-

mation, and Modulation Theory, Part IV), Wiley-Interscience,

1 edition, Mar. 2002.

[7] W. Kellermann, “Strategies for combining acoustic echo can-

cellation and adaptive beamforming microphone arrays,” in

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97.,

1997 IEEE International Conference on, Apr. 1997, vol. 1, pp.

219–222.

[8] W. Herbordt and W. Kellermann, “GSAEC - acoustic echo can-

cellation embedded into the generalized sidelobe canceller,”

in Proc. European Signal Processing Conference (EUSIPCO),

Sep. 2000, vol. 3, pp. 1843–1846.

[9] W. Herbordt and W. Kellermann, “Limits for generalized side-

lobe cancellers with embedded acoustic echo cancellation,” in

Acoustics, Speech, and Signal Processing, 2001. Proceedings.

(ICASSP ’01). 2001 IEEE International Conference on, 2001,

vol. 5, pp. 3241–3244.

[10] W. Herbordt, W. Kellermann, and S. Nakamura, “Joint opti-

mization of LCMV beamforming and acoustic echo cancella-

tion,” in Proc. European Signal Processing Conference (EU-

SIPCO), 2004, pp. 2003–2006.

[11] K.-D. Kammeyer, M. Kallinger, and A. Mertins, “New as-

pects of combining echo cancellers with beamformers,” in

Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing,

Philadelphia, PA, USA, Mar. 2005, vol. 3, pp. 137–140.

[12] W. Herbordt, S. Nakamura, and W. Kellermann, “Joint op-

timization of LCMV beamforming and acoustic echo can-

cellation for automatic speech recognition,” in Acoustics,

Speech, and Signal Processing, 2005. Proceedings. (ICASSP

’05). IEEE International Conference on, Mar. 2005, vol. 3, pp.

iii/77 – iii/80 Vol. 3.

[13] M. H. Maruo, J. C. M. Bermudez, and L. S. Resende, “Sta-

tistical analysis of the jointly-optimized acoustic echo cancel-

lation BF-AEC structure,” in Acoustics, Speech, and Signal

Processing, 2013. ICASSP 2013. Proceedings. 2013 IEEE In-

ternational Conference on, 2013, pp. 5840–5844.

[14] M. H. Maruo, J. C. M. Bermudez, and L. S. Resende, “Statisti-

cal analysis of a jointly optimized beamformer-assisted acous-

tic echo canceler,” Signal Processing, IEEE Transactions on,

vol. 62, no. 1, pp. 252–265, Jan 2014.

[15] M. Guo, T. B. Elmedyb, S. H. Jensen, and J. Jensen, “Analysis

of acoustic feedback/echo cancellation in multiple-microphone

and single-loudspeaker systems using a power transfer function

method,” Signal Processing, IEEE Transactions on, vol. 59,

no. 12, pp. 5774 –5788, Dec. 2011.

[16] M. Guo, S.H. Jensen, J. Jensen, and S.L Grant, “Analysis of

closed-loop acoustic feedback cancellation systems,” in Acous-

tics, Speech, and Signal Processing, 2013. ICASSP 2013. Pro-

ceedings. 2013 IEEE International Conference on, 2013, pp.

590–594.

[17] M. Kallinger, J. Bitzer, and K.-D. Kammeyer, “Study on com-

bining multi-channel echo cancellers with beamformers,” in

Acoustics, Speech, and Signal Processing, 2000. ICASSP ’00.

Proceedings. 2000 IEEE International Conference on, 2000,

vol. 2, pp. 797–800.

[18] O.L. Frost, III, “An algorithm for linearly constrained adaptive

array processing,” Proceedings of the IEEE, vol. 60, no. 8, pp.

926 – 935, Aug. 1972.

[19] L. Godara and A. Cantoni, “Analysis of constrained LMS al-

gorithm with application to adaptive beamforming using per-

turbation sequences,” Antennas and Propagation, IEEE Trans-

actions on, vol. 34, no. 3, pp. 368 – 379, Mar. 1986.

[20] W. B. Mikhael, F. H. Wu, L. G. Kazovsky, G. Kang, and

L. Fransen, “Adaptive filters with individual adaptation of pa-

rameters,” Circuits and Systems, vol. 33, pp. 677–686, 1986.

[21] M. Rupp and J. Cezanne, “Robustness conditions of the LMS

algorithm with time-variant matrix step-size,” Signal Process.,

vol. 80, no. 9, pp. 1787–1794, Sep. 2000.

[22] R. Dallinger and M. Rupp, “A strict stability limit for adaptive

gradient type algorithms,” in Signals, Systems and Computers,

2009 Conference Record of the Forty-Third Asilomar Confer-

ence on, 2009, pp. 1370–1374.

[23] K. Buckley, “Spatial/spectral filtering with linearly constrained

minimum variance beamformers,” Acoustics, Speech and Sig-

nal Processing, IEEE Transactions on, vol. 35, no. 3, pp. 249

– 266, Mar. 1987.

[24] L. Griffiths and C. Jim, “An alternative approach to linearly

constrained adaptive beamforming,” Antennas and Propaga-

tion, IEEE Transactions on, vol. 30, no. 1, pp. 27 – 34, Jan.

1982.

[25] A. Papoulis and S. U. Pillai, Probability, Random Variables,

and Stochastic Processes, McGraw-Hill series in electrical and

computer engineering. McGraw-Hill Education, 2002.

[26] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and For-

mulas with Application to Linear Systems Theory., Princeton

University Press, 2005.

[27] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge

University Press, 1990.

[28] J. E. Prussing, “The principal minor test for semidefinite matri-

ces,” AIAA Journal of Guidance, Control, and Dynamics, vol.

9, no. 1, Jan. 1986.

[29] T. Kailath, Linear Systems, Prentice-Hall, New Jersey, USA,

1980.

[30] R. A. Brualdi and S. Mellendorf, “Regions in the complex

plane containing the eigenvalues of a matrix,” American Math-

ematical Monthly, vol. 101, no. 10, pp. 975–985, Dec. 1994.

6448


