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ABSTRACT

In this work, we propose an adaptive set-membership (SM) reduced-
rank filtering algorithm using the constrained constant modulus
(CCM) criterion for beamforming. We develop a stochastic gra-
dient (SG) type algorithm based on the concept of SM technique
for adaptive implementation. The filter weights are updated only
if the bounded constraint cannot be satisfied. In addition, we also
propose a scheme of time-varying bound and incorporate parame-
ter dependence to characterize the environment for improving the
tracking performance of the proposed algorithm. Simulation results
show that the proposed adaptive SM reduced-rank beamforming
algorithm with dynamic bounds achieves superior performance to
previously reported methods at a reduced update rate.

Index Terms— Adaptive filtering, beamforming, interference
suppression, reduced-rank algorithm, set-membership filtering.

1. INTRODUCTION

The constrained constant modulus (CCM) criterion is considered as
one of the most promising design criteria for adaptive beamforming
that has been widely developed for different applications such as
radar, sonar and wireless communications [1]. The CCM technique
is based on a method that penalizes deviations of the modulus of the
received signal away from a fixed value and forced to satisfy one
or a set of linear constraints such that signals from the desired user
are detected [2]-[S]. The CCM-based algorithms operate without the
need for training sequences, and lead to a solution comparable to that
obtained from the minimization of the mean squared error (MSE).
Recursive least squares (RLS) and stochastic gradient (SG) al-
gorithms (e.g., least mean squares) are considered as the most com-
monly used adaptive implementation algorithms for beamforming
[6]. Despite the fast convergence of RLS algorithms, however, it is
preferable to implement adaptive beamformers with SG algorithms
due to complexity and cost issues. For this reason the improvement
of blind SG techniques is an important research and development
topic. One problem for the adaptive SG algorithms is that the con-
vergence depends on the eigenvalue spread of the received data co-
variance matrix. This condition could be worse when the number
of filter elements is large since it requires a large amount of snap-
shots to reach the steady-state. In this context, reduced-rank signal
processing has received significant attention in the past years. The
reduced-rank technique projects the received vector onto a lower di-
mensional subspace and performs the filter optimization within this
subspace. A number of reduced-rank algorithms have been devel-
oped to design the subspace projection matrix and the reduced-rank
filter [7]-[16]. Compared to the full-rank algorithms operating with a
large number of parameters, they provide faster convergence speed,
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better tracking performance and an increased robustness against in-
terference.

However, a common problem with standard adaptive algorithms
is the computational complexity associated with the adaptation for
every time instant. Set-membership (SM) filtering techniques have
been proposed to address this issue [17]-[21]. They specify a bound
on the magnitude of the estimation error or the array output, and can
reduce the complexity due to data-selective updates. SM filtering
techniques usually rely on two steps: 1) information evaluation and
2) parameter update. If step 2) does not occur frequently, and step 1)
does not require much complexity, the overall complexity can be re-
duced significantly. From [17]-[21], we can see that the SM filtering
techniques are able to achieve a reduction in computation without
performance degradation compared to conventional algorithms due
to the use of an adaptive step size for each update. The work in [19]
appears to be the first approach to combine the SM filtering algo-
rithm with the CCM criterion. To the best of our knowledge, there
is a very small number of works combining the reduced-rank algo-
rithm with the SM technique, and there has been no work with SM
reduced-rank filtering using the CCM criterion.

In this paper, we present extensions of the reduced-rank ap-
proach using joint interpolation, decimation and filtering (JIDF)
reported in [15] to the adaptive set-membership filtering using CCM
criterion for beamforming. We develop a SG-type algorithm based
on the concept of SM technique for adaptive implementation. The
filter weights are updated only if the bounded constraint cannot be
satisfied. In addition, we also propose a scheme of time-varying
bound for beamforming and incorporate parameter dependence to
characterize the environment for improving the tracking perfor-
mance of the proposed algorithm. Simulation results show that the
proposed adaptive SM JIDF-CCM beamforming algorithm with dy-
namic bounds achieves superior performance to previously reported
methods at a reduced update rate.

2. SYSTEM MODEL AND PROBLEM STATEMENT

2.1. System Model

Let us suppose that g narrowband signals impinge on a uniform lin-
ear array (ULA) of M (M > q) sensor elements. The sources
are assumed to be in the far field with direction of arrivals (DOAs)
6o, ...,0,_1. The ith snapshot’s received vector r € C™*! can be
modeled as

r(i) = A(0)b(3) + n(q), (1)

where @ = [0o, . ..,0,—1]" € R?*! is the vector with the DOAs of
the signals, A(0) = [a(6o),...,a(04—1)] € C**7 comprises the
normalized signal steering vectors a(f) € CM*!

a(ak) _ [17 6727rj>%c cos(Gk)7 o e*?ﬂj(]\lfl)% cos(Ok)]T7 (2)



where k = 0,...,q — 1, A, is the wavelength, v (v = %
in general) is the inter-clement distance of the ULA, and (.)7
stands for transpose. To avoid mathematical ambiguities, the
steering vectors a(fy) are assumed to be linearly independent,
b(i) = [bo(i),b1(3),...,bg—1(3)]T is the source data vector,
where we assume that the symbols are independent and identi-
cally distributed (i.i.d) random variables with equal probability from
the set {+1}. The vector n € CM*! is a Gaussian noise with
E[nn'] = 021, where o2 denotes the noise variance, T denotes an
identity matrix of appropriate dimension, E[.] stands for expected
value, and (.)! stands for the Hermitian transpose. The output of a
narrowband beamformer is given by

y(i) = w' (i)r(i), 3)

where w(i) = [wi, ..., w7 € CM*? is the complex weight vec-
tor of the filter.

2.2. Problem Statement

The full-rank adaptive filtering algorithms usually provide poor con-
vergence performance for the beamformer design in the dynamic
scenario with large M. The reduced-rank schemes which process
the received vector r(¢) in two stages have been proposed to solve
these problems [7]-[16]. The first stage performs a dimensionality
reduction by projecting the large dimension data vector r(7) into a
lower dimensional subspace. The second stage is carried out by a
reduced-rank filter. The output of a reduced-rank scheme is given by

y(i) = w ()85 ()r(i) = w" ()% (d), )

where Sp(7) denotes an M x D projection matrix which performs
dimensionality reduction and W (i) = [@1,@2,...,wp]" denotes
the D X 1 reduced-rank filter. The basic problem of CCM reduced-
rank algorithms is how to effectively devise the projection matrix
Sp and reduced-rank filter w using the CCM criterion:

minimize  E[e’(4)]. (5

st. w(i)Sh(i)a(bo) = v, (©6)
where e(i) = |y()|> — 1, and v is a constant to ensure the convexity
of the optimization problem as discussed in [22].

3. THE JIDF REDUCED-RANK SCHEME

In this work, we design the subspace projection matrix Sp by con-
sidering interpolation and decimation. In this case, the receive filter
length is substantially reduced, which results in significantly reduced
computational complexity and very fast convergence speed. The
M x 1 received vector r(¢) is processed by a framework contains
an interpolator and a decimation unit, followed by a reduced-rank
receive filter. The received vector is operated by the interpolator
p(i) = [p1(4),...,pr(i)]" with filter length I, I < M, the output
of the interpolator is expressed by

©(i) = P (i)r(3) ©)
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where the M x M Toeplitz convolution matrix P () is given by

p1(7) o ... 0
D opi(d) 0
pr(i) 0
PG) = 0 pr(3) 0
0 0 0
0 O plki)

In order to facilitate the description of the scheme, we introduce an
alternative way to present the vector T(3),

F(i) = P"(i)r(i) =R ()p" (0 (8)
where the M x I matrix R’ (i) with the samples of r(i) =
[70(3), ..., rar—1(3)]T has a Hankel structure [24] given by

ro(7) r1(2) rr-1(i)

ra—1(d)  rm—r41(4) rar—1(%)
R (i) = ra—r41(i)  rar—re2(d) - 0
rar—2(1) rar—1(4) 0 0
rar—1(4) 0 0 0

The dimensionality reduction is performed by a decimation unit
with D x M decimation matrix T that projects ¥(¢) onto D x 1
vector T(7), where D is the rank. The D x 1 vector ¥(4) is given by

£(i) = TP (4) r(i) = TF(i) = TR (i)p* (i) )
———
sH@)

where S p (i) denotes the equivalent subspace projection matrix. The
output of the reduced-rank receive filter w(4) is given by y(i) =
wH ()F(5).

The elements of the decimation matrix only take the value O
or 1. This corresponds to the decimation unit simply keeping or
discarding the samples. We introduce the structure of the decimation
matrix as follows,

T=[t to tp |7
where the M x 1 vector t4 denotes the d-th basis vector of the
decimation unit, d = 1, ..., D, and its structure is given by
ta=10,...,0,1,0,...,0]" (10)
N—— ——
qd M—qq—1

where ¢4 is the number of zeros before nonzero element. Note that

it is composed of a single 1 and M — 1 0s. We set the value of gq
in a deterministic way which can be expressed as gg = | 75| x (d —
1). The simulation results will show that the proposed reduced-rank
scheme with the decimation unit design method works very well.

4. PROPOSED SM REDUCED-RANK ALGORITHM

In this section, we introduce a novel adaptive CCM reduced-rank
algorithm by combining the JIDF scheme with the SM technique to
realize the data selective updates for beamforming.



4.1. Proposed Reduced-Rank SM Scheme

In the conventional full-rank SM filtering scheme [18]-[20], the fil-
ter w is designed to achieve a predetermined or time-varying bound
on the magnitude of the estimation error. This bound can be re-
garded as a constraint on the filter design, which performs the data-
selective updates. In this work, we develop the SM adaptive JIDF-
CCM reduced-rank algorithm. We take both the interpolator p and
the reduced-rank weight vector w into consideration due to the fea-
ture of their joint iterative exchange of information. Let H; denote
the set containing all the pairs of {p(i), W(4)} for which the asso-
ciated error at time instant “¢” is upper bounded in magnitude by -,
which is given by

Hi={wel pec™ )<’} (D

where the set H; is referred to as the constraint set. We then define
the exact feasibility set 7; as the intersection of the constraint sets
over the time instants [ = 1, ..., ¢, which is described by

- N (12)

I=1,(bo,r)€Q

where bg denotes the desired signal and Q denotes the set including
all possible data pairs {bo, r}. The aim of (12) is to develop adaptive
algorithms that update the parameters such that they will always re-
main within the feasibility set. In practice, it is impossible to traverse
all possible data pairs. Under this condition, we define the member-
ship set constructed from the observed data pairs, which is given by
;i = Ni_;H;. Note that the two sets are equal only if all possible
data pairs are traversed up to time instant 4.

The proposed adaptive scheme introduces the principle of the
SM filtering technique into the JIDF-CCM reduced-rank algorithm.
Therefore, it operates with respect to certain snapshots and provides
data-selective updates. Compared to the existing reduced-rank al-
gorithms that updates for all the snapshots the proposed scheme re-
duces the computational complexity. Furthermore, the data-selective
updates will lead to highly effective variable step size for the SG-
based reduced-rank beamforming algorithm. In the following, we
will describe the proposed algorithm in detail.

4.2. Proposed SM JIDF-CCM Reduced-Rank Algorithm

We devise a gradient descent strategy to compute the reduced-rank
filter weight vector W and the interpolator p that minimize the in-
stantaneous CCM cost function, the adaptation is required when the
square of the error e (i) exceeds a specified error bound 72 (). The
bound here can be assumed to be time-varying and based on the esti-
mated parameters of the filter. The problem is formulated as follows,

minimize  Joar = €2(i) = (W7 @)FG) [P - 1), (13)

st. w7(i)TD(0o)p* (i) = v, whenever (i) > ~*(i),

14
where the M x I matrix D(6) is a Hankel matrix with the ele-
ments of a(6p). This problem can be solved based on the method of
Lagrange multipliers using the equality constraint  e?(i) = 2(4)
[23]:

£ = (%" (5)E@)*=1)* +2AR{%" (i) TD(60)p™ (i) — v} (15)

where A is a Lagrange multiplier and R{.} selects the real part of
the quantity. In order to update the reduced-rank filter, we consider
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the following gradient search procedure:

oL

w(i+1) =w(i) — pw=— 16

w(i+1)=w(i) —pu S (16)
where ., is the effective step size for (16). By taking the gradient of
(15) with respect to W™ and using the constraint W TD(y)p* =

wTTPa() = v, we obtain the following SG algorithm

Wi+ 1) = Qi) (W(i) — pwe(i)y* ()T(0)) + va(bo) (a" (60)a(0o)) ",

17)

= =H
where &(f0) = TP"a(f0) and (i) = T — 2722100} Then,
we consider the following gradient search procedure to update the

interpolator:
) ) oL
pi+1) =p() — Mg (18)

where 1, is the effective step size for (18) and

g—lﬁ =e(®R” ()TTw W TR *(i)p(i) + ADT (60)T T w".

(19)
By multiplying % TD(6) on both sides of (18) and using the con-
straint v'VHTD(Go)p* = v, we obtain

e())wTTD*(00)R T (i) TTw*w TR * (i)p ()

A= WD (09D (09) TTw (20)
and finally we have
. . N DT (6)TTw*wTTD* (6
B +1) = p(0) = me(ily” ()1~ Do S )
xR” ()T"w*
(21)

The update is performed only if the constraint e (i) = ~(i) cannot
be satisfied. Specifically, by substituting (17) and (21) into the con-
straint on the time-varying bound, respectively, we obtain (22) and
(23):

T+~ (2)

1 M1E9 (@)
Ty (D] : . -
A it |y(i)] > /1 +~(9)

0 e(i)fff(i)(lf%?fz:gi)f(i)
i) = L -
L f )| < /1—~(2
e(i)rH (4) (17 ;E‘??;:)};EZE;)F(” |y( )| ’Y( )
otherwise

(22)

The proposed SM JIDF-CCM adaptive algorithm consists of (17),
(21), (22) and (23), and it is employed to determine a set of estimates
{w (i), p(¢)} that satisfy the bounded constraint.

It is worth to mention that the bound should be selected appro-
priately to describe the characteristics of the environment. There-
fore, it leads to improved convergence and tracking performance.
In the following, we introduce a parameter dependent bound (PDB)
scheme that was reported in [20] to update the reduced-rank weight
vector for detecting the desired user and mitigating the interference
and noise, the scheme is given by

(i +1) = (1= p)y(@) + pV/glPOTTwW(0)[[?62 (i), (24)

where p is a forgetting factor parameter that should be set to guaran-
tee a proper time-averaged estimate of the evolution of the power of
weight vector w (), which is given by w (i) = P (i) T % (4), where




(1— Yo,

ly(2)]

_DH @) TTwwHTD(0))

[y()| > /1 + ()

e()wH TR’ (i) (1

(1- %5

wHTD(09)D (60)TTw

JR'H () TT &

it ()| < VI—700) 23)

ly()]

e(i)® TR’ (5) (1- 2 00T @I TD0) ) /11 ()17

wHTD(60)DH (60)TTw

0

g (g > 1)1is a tuning coefficient and &i(i) is an estimate of the noise
power. We assume that the noise power is known beforehand at the
receiver. The time-varying bound provides a smoother evolution of
the weight vector trajectory and thus avoids too high or low values
of the squared norm of the weight vector. It establishes a relation be-
tween the estimated parameters and the environmental coefficients.
The proposed SM reduced-rank algorithm is summarized in Table 1.

The proposed algorithm requires DM + D + n((D + 2)I +
3D —3) additions and (D + 1) M + D +2+n((D+3)I +4D+3)
multiplications for each snapshot, where 1 denotes the update rate.
In the simulation, we will show that the proposed algorithm achieves
a better performance while operates with a low update rate.

Table 1. The Proposed SM JIDF-CCM Algorithm

1 Initialization:
H
2 p(0)=[1,0,...,0]",W(0) = rrpm e
3 14w (0) and g, (0) are small positive values .
4 For each time instant,: =1,..., N
5 Compute the bound ~(¢) by using (24).
6 ifel(i) > 42()
7 Compute the step size u,, by using (23).
8 Compute the interpolator p(z) by using (21).
9 Compute the step size u,, by using (22).
10 Compute the filter w(¢) by using (17).
11 else
12 p(i) =p(i—1)and w(i) = w(i — 1).
13 end

5. SIMULATIONS

In this section, we evaluate the performance of the proposed set-
membership adaptive reduced-rank beamforming algorithm and
compare it with the existing adaptive blind full-rank and reduced-
rank beamforming algorithms. In the simulations, we assume that
there is one desired user in the system and the related DOA is known
by the receiver. Simulations are performed with a ULA contain-
ing M = 40 sensor elements with half-wavelength inter-element
spacing. The DOAs are randomly generated with uniform random
variables between 0 and 180 degrees for each experiment. The re-
sults are averaged by 1000 runs. We consider the binary phase shift
keying (BPSK) modulation and set v = 1.

Fig. 1 (a) indicates the SINR convergence performance versus
the number of snapshots for the proposed SM JIDF-CCM adaptive
reduced-rank algorithm and the conventional adaptive beamforming
algorithms, namely, the CCM full-rank algorithm, the CMV full-
rank algorithm, the MWF reduced-rank algorithm and the SM CCM
full-rank algorithm. The input SNR is 15 dB and the number of
users is ¢ = 6. The coefficients for the PDB scheme is given by
p = 098, g = 10 and y(0) = 0, We note that all the parame-
ters for the analyzed algorithms are optimized based on simulations.
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otherwise

From the results, we can see that the proposed SM JIDF-CCM adap-
tive beamforming algorithm with the PDB scheme achieves the best
convergence performance. While it only requires around 4.38% of
the time for filter parameter updates and can save significant compu-
tational resources.

(a) =6,M=40,SNR=15 dB
T T T T

(b) g=6,M=40,SNR=15dB
T T T

SINR
SINR
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—&— CCM-Full-rank
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Fig. 1. SINR performance versus number of snapshots. D = I = §,
q= 6, M= 40, SNR= 15dB.

In Fig. 1 (b), we compare the proposed SM reduced-rank adap-
tive beamforming algorithm with fixed bounds and that with time-
varying bounds in the same system configuration. The coefficients
of the proposed adaptive beamforming algorithm with time-varying
bound scheme are well tuned as the simulations of Fig. 1 (a). For
the fixed bound scheme, we set v = 0.1, v = 0.2 and v = 0.4
to test the performance. The simulation results illustrate that the
proposed adaptive algorithm with time-varying bound scheme out-
performs the adaptive algorithms with fixed bound schemes. Due
to the data-selective update feature the SM JIDF-CCM reduced-rank
algorithm with v = 0.1, v = 0.2 and v = 0.4 can provide 35.01%,
27.32% and 15.22% update rates, respectively.

6. CONCLUSION

In this paper, we proposed a novel set-membership reduced-rank al-
gorithm for CCM beamforming. We have developed a SG-type al-
gorithm based on the concept of SM filtering for adaptive imple-
mentation. We updated the filter weights only if the bounded con-
straint cannot be satisfied. Moreover, we also proposed a scheme of
time-varying bound and incorporated parameter dependence to char-
acterize the environment for improving the tracking performance of
the proposed algorithm. Simulation results have shown that the pro-
posed SM CCM reduced-rank algorithm achieves superior perfor-
mance to previously reported algorithms at a reduced update rate.
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