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ABSTRACT

This paper is concerned with the mean-square performance of the
hyperslab-based adaptive projected subgradient method, a set the-
oretic estimation tool that has been successfully applied in a wide
variety of signal processing tasks. Using energy-conservation argu-
ments, general performance results are derived without restricting
the regression data to being Gaussian or white. Numerical simula-
tions are provided to illustrate the theoretical developments.

Index Terms— Adaptive filters, energy conservation, mean-
square performance, error nonlinearity, data-reusing algorithms

1. INTRODUCTION

The hyperslab-based adaptive projected subgradient method (H-
APSM) [1, 2] is a set theoretic estimation tool [3, 4] that has been
applied successfully in a variety of signal processing tasks such
as adaptive filtering [5], online classification [6–8] and distributed
learning [9–15]. The H-APSM has several appealing features that
include low complexity, robustness against noise, generality, and de-
sign flexibility, which make it well-suited for many applications. In
the context of adaptive filtering, its general form serves as a unifying
principle for a wide range of schemes that include the normalized
least-mean-squares (NLMS) algorithm [16], the set-membership
NLMS (SM-NLMS) algorithm [17], the affine projection algorithm
(APA) [18, 19], and other projection-based adaptive schemes [5].

Due to its applicability in a wide range of scenarios, there are
already several analytical results for the H-APSM [2, 8, 9, 20, 21],
although most of them are based on deterministic arguments or are
only concerned with the convergence of the estimates of the algo-
rithm. This paper presents yet another result on H-APSM, with a
focus on the evaluation of the mean-square performance of the H-
APSM as an adaptive filter. More specifically, a main objective of
this paper is to characterize the steady-state mean-square error of the
aforementioned set theoretic scheme. For this purpose, we rely on
well-known energy-conservation arguments [22], which are among
the most useful techniques for the analyses of the performance of
adaptive algorithms [23–28]. Though the inherent complexity of
projection-based algorithms makes the analysis challenging, we at-
tempt to provide a fairly general treatment of the mean-square per-
formance of H-APSM based on the earlier works [22, 25, 26]. We
also illustrate that, compared to other data-reusing algorithms such
as the APA (see, e.g., [26, 27]), the H-APSM manages to obtain a
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lower steady-state MSE value even if one reuses more data in its im-
plementation. Moreover, since the H-APSM covers the SM-NLMS
algorithm as a special case, the present analysis, in particular the
stability result, can also be used to complement the results derived
earlier for the said algorithm [28, 29]. Numerical simulations are
shown to support our theoretical findings.

2. PRELIMINARIES

2.1. Notation

Throughout this paper, we denote the sets of all nonnegative integers
and real numbers by N and R, respectively. Vectors and matrices are
represented by boldface characters. We denote the Euclidean norm
by ‖·‖, the transpose of a vector or matrix by (·)T, the identity matrix
of appropriate dimensions by I , the trace of a matrix by Tr(·), and
the expectation of a random variable by E[·].

Let C be a subset of the Euclidean space RM . If C is nonempty,
the distance from h ∈ RM to C is d(h, C) := inf ‖h − C‖. If C
is also closed and convex, then, for every h ∈ RM , there exists a
unique point PC(h) ∈ C, called the projection of h onto C, such
that ‖h− PC(h)‖ = d(h, C).

2.2. Data Model

Consider noisy measurements {d(i)}i∈N that arise from the linear
model

d(i) = uT
i h
◦ + v(i), (1)

where h◦ is an unknown vector that we wish to estimate, v(i) ac-
counts for modeling errors with variance denoted by σ2

v , and ui ∈
RM denotes the regressor vector with a positive-definite covariance
matrix R := E[uiu

T
i ]. For simplicity, the noise v(i) is assumed to

be independent of uj for all j and of v(j) for all j 6= i.

2.3. The Algorithm

The general form of the adaptive projected subgradient method
(APSM) [2, 5, 6, 8–10, 15, 30–38] can be described as follows [2].
Let Θi : RM → [0,+∞) (∀i ∈ N) be a sequence of convex
functions and K ⊂ RM be a nonempty closed convex set. For
any arbitrarily given h−1 ∈ K, the APSM generates a sequence of
estimates {hi}i∈N ⊂ K using the recursion

hi =

PK
(
hi−1 − µ

Θi(hi−1)Θ′i(hi−1)

‖Θ′
i(hi−1)‖2

)
, if Θ′i(hi−1) 6= 0,

hi−1, if Θ′i(hi−1) = 0,
(2)
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where Θ′(hi−1) ∈ ∂Θi(hi−1) := {r ∈ RM | Θi(hi−1)+rT(x−
hi−1) ≤ Θ(x), ∀x ∈ RM} 6= ∅ and µ is the step-size or relax-
ation parameter. The APSM satisfies several remarkable properties
such as monotone approximation, asymptotic optimality and con-
vergence in norm [2]. In general, different design parameters can
lead to several efficient schemes that can be tailored for different
types of applications. The commonly used hyperslab-based version
H-APSM [2, 5, 8] is obtained by choosing the following parameters.
Define Θi : RM → [0,+∞) by

Θi(h) :=
∑
j∈Ji

ωjd
2(h, Sj), (3)

where {ωj}j∈Ji ∈ (0, 1],
∑
j∈Ji

ωj = 1 and Ji = {max(0, i −
q + 1),max(0, i− q + 1) + 1, . . . , i}. Then choosing K = RM in
(2) yields the scheme

(∀i ∈ N) hi = hi−1 + µ

( ∑
j∈Ji

ωjPSj (hi−1)− hi−1

)
, (4)

where µ ∈ [0,Mi] and

Mi :=


∑
j∈Ji

ωj‖PSj (hi−1)− hi−1‖2

‖
∑
j∈Ji

ωjPSj (hi−1)− hi−1‖2
if hi−1 /∈

⋂
j∈Ji

Sj

1 otherwise.

Note that by using a different sequence of convex functions for (3),
the step-size range presented above can be doubled [2]. The property
set at each iteration in (4) is chosen to take the form of a hyperslab,
which is defined as follows:

Sj := {h ∈ RM : |d(j)− uT
jh| ≤ ρ}, j ∈ N

where ρ ≥ 0 and Sj = RM if uj = 0. The projection onto the
hyperslab Sj is given by

PSi(h) =


h +

d(j)− uT
jh− ρ

‖uj‖2
uj , if d(j)− uT

jh > ρ

h +
d(j)− uT

jh + ρ

‖uj‖2
uj , if d(j)− uT

jh < −ρ

h, if h ∈ Sj or uj = 0.
(5)

3. PERFORMANCE ANALYSIS

In order to apply energy-conservation arguments, we illustrate how
the H-APSM satisfies a form that is similar to some existing adaptive
filtering algorithms. Let ej(i) := d(j) − uT

jhi−1. Then (5) can be
written as

PSj (hi−1) = hi−1 +
ej(i)− fρ(ej(i))

‖uj‖2
uj ,

where fρ : R→ [−ρ, ρ] is the continuous piecewise linear function
defined by

fρ(x) :=
|x+ ρ| − |x− ρ|

2
.

Thus, we can express (4) in the form

hi = hi−1 + µ
∑
j∈Ji

ωj
ej(i)− fρ(ej(i))
‖uj‖2 + ε

uj ,

where we added a regularization parameter ε > 0 in the data nor-
malization of the algorithm. Now, introduce the quantities

U i = [ui ui−1 . . . ui−q+1]

di = [d(i) d(i− 1) . . . d(i− q + 1)]T

W i = diag{ωi, ωi−1, . . . , ωi−q+1}

N i = diag{(‖ui‖2 + ε)−1, . . . , (‖ui−q+1‖2 + ε)−1}

and define the vector-valued estimation error

ei = di −UT
i hi−1.

Observe that using the quantities above, the H-APSM is now seen to
satisfy the form

hi = hi−1 + µU iΠi(ei − fρ(ei)). (6)

where Πi = W iN i. It is clear from recursion (6) that the H-APSM
satisfies a description similar to other data-reusing adaptive algo-
rithms [27]. The main difference is the presence of the function fρ
that operates component-wise on the estimation error ei. In rela-
tion to the terminologies in [25, 27, 28], one may thus consider the
H-APSM as a data-reusing algorithm with error nonlinearities.

As the H-APSM is now seen to be similar to other data-reusing
algorithms, we may now rely on and build upon the performance
analyses developed for those schemes [26, 27]. Define the weight-
error vector h̃i = h◦ − hi. Then (6) can be rewritten in the form

h̃i = h̃i−1 − µU iΠi(ei − fρ(ei)). (7)

Introduce the a priori and a posteriori weighted estimation errors

ea,i = UT
i h̃i−1 and ep,i = UT

i h̃i.

Multiplying both sides of (7) by UT
i from the left, we find that

ep,i = ea,i − µUT
iU iΠi(ei − fρ(ei)). (8)

Combining (7) and (8), we get

h̃i + U i(U
T
iU i)

−1ea,i = h̃i−1 + U i(U
T
iU i)

−1ep,i.

Equating the weighted norms of both sides of the equation above
results in the energy-conservation relation

‖h̃i‖2 + eT
a,i(U

T
iU i)

−1ea,i = ‖h̃i−1‖2 + eT
p,i(U

T
iU i)

−1ep,i.
(9)

An important feature of the relation above is that it has been estab-
lished without using any approximations. This exact relation de-
scribes how the weighted energies of the error quantities evolve in
time. One also sees that equation (9) is the energy-conservation re-
lation that is also satisfied by standard data-reusing adaptive algo-
rithms [26, 27].

In the next sections we exploit relation (9) to study the perfor-
mance of the H-APSM. In order to make the succeeding analysis
tractable, we shall sometimes rely on several simplifying assump-
tions that are usually invoked in the literature, as can be seen in,
e.g., [22, 25–27].
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3.1. Mean Stability

Before we characterize the mean-square performance of the H-
APSM, we first determine mean stability conditions by using the
weight-error vector recursion (7).

Note that from (1), we have the relation

ei = ea,i + vi = UT
i h̃i−1 + vi,

where vi := [v(i) v(i−1) . . . v(i−q+1)]T. We can then express
recursion (7) in the form

h̃i = h̃i−1 − µU iΠiU
T
i h̃i−1 − µU iΠivi + µU iΠifρ(ei).

Taking expectations and assuming that

• the noise v(i) is independent and identically distributed (iid)
and statistically independent of the regression matrix {U i},

we conclude that the mean of the weight-error vector evolves accord-
ing to the following dynamics:

Eh̃i = (I − µP)Eh̃i−1 + µE[U iΠifρ(ei)], (10)

where
P := E[U iΠiU

T
i ].

Since fρ(ei) has bounded entries, the algorithm converges in the
mean if the matrix I − µP is a stable matrix. This holds if

µ <
2

λmax(P)
,

where λmax denotes the maximum eigenvalue of the symmetric ma-
trix P . Now, note that we can simplify P to

P = E
[

uiu
T
i

ε+ ‖ui‖2

]
.

Thus, by invoking the analysis on the same matrix P in [22] that
is used for the study of the stability of the NLMS algorithm, we
conclude that the H-APSM converges in the mean for any step-size
µ < 2. Furthermore, taking the limit of (10) as i→ +∞, we get

lim
i→+∞

Ehi = h◦ −P−1 lim
i→+∞

E[U iΠifρ(ei)]. (11)

Hence, we say that the H-APSM as an estimator is asymptotically
biased. Note that if we set ρ = 0, the second term on the right-
hand side of (11) vanishes. That is, if we instead use hyperplanes,
i.e., hyperslabs with ρ = 0, as property sets, the H-APSM becomes
asymptotically unbiased. The following theorem provides a charac-
terization of the stability of the H-APSM in the mean sense.

Theorem 1 (Mean stability) Consider data model (1). Then the
hyperslab-based APSM (6) asymptotically converges in the mean for
any initial condition given any step-size µ < 2. Moreover, given any
ρ > 0, the algorithm is asymptotically biased. Furthermore, the
choice of weights {ωj} does not affect the mean stability and con-
vergence speed of the H-APSM in the mean sense.

The observations described above regarding the effect of the
weights and the asymptotic unbiasedness for ρ = 0 coincide with
the result in [9] for the hyperplane-based APSM, a special case of
the H-APSM used in that work in the context of adaptive networks.
Note further that our result is not in conflict with the result estab-
lished in [21], where a stochastic analysis of the H-APSM has been
given, since convergence in the mean is a stronger condition that is
not implied by convergence in probability.

3.2. Mean-Square Performance

We now derive an approximation to the steady-state performance of
the H-APSM. In particular, our goal is to evaluate the steady-state
mean-square error (MSE), denoted by ξ, which is given by

ξ := lim
i→+∞

Ee2(i),

where
e(i) := d(i)− uT

i hi−1

is called the output estimation error at time i.
Taking the limit of both sides of the energy-conservation relation

(9) and assuming the steady-state condition

E‖h̃i‖2 = E‖h̃i−1‖2 as i→ +∞,

we obtain the variance relation

E[eT
a,i(U

T
iU i)

−1ea,i] = E[eT
p,i(U

T
iU i)

−1ep,i].

Substituting (8) into the right-hand side of the equation above yields

µE[(ei − fρ(ei))TAi(ei − fρ(ei))] = 2E[eT
a,iΠi(ei − fρ(ei))],

(12)
where Ai := ΠiU

T
iU iΠi. If we neglect the dependency of h̃i−1

on past noises, we find, after some straightforward manipulations,
that

µ{E[eT
a,iAiea,i] + E[vT

iAivi]− 2E[fρ(ei)
TAiea,i]

−2E[fρ(ei)
TAivi] + E[fρ(ei)

TAifρ(ei)]}

= 2E[eT
a,iΠiei]− 2E[eT

a,iΠifρ(ei)]. (13)

In order for us to evaluate the steady-state MSE of the H-APSM, we
need to deal with the expectations above. To handle this task we rely
on and build upon a simplifying assumption used in the analysis of
data-reusing algorithms, in particular, of the APA [26]. That is, we
assume at steady-state and for sufficiently small step-sizes that,

• U i is statistically independent of ea,i,

• E[ea,ie
T
a,i] ≈ Ee2a(i) · I , where ea(i) := uT

i h̃i−1,

• E[viv
T
i ] ≈ σ2

v · I ,

• E[ea,ifρ(ei)
T] ≈ E[ea(i)fρ(e(i))] · I ,

• E[vifρ(ei)
T] ≈ E[v(i)fρ(e(i))] · I ,

• E[fρ(ei)fρ(ei)
T] ≈ E[f2

ρ (e(i))] · I .

Observe that we considered a simple form of the assumption in [26]
to make the resulting expressions simpler. In particular, we note that
other approximations for the matrices above can also be motivated
as in [26]. The expressions for the expectations involving fρ on the
other hand can be computed directly as in [29]. Assuming v(i) is
white Gaussian, the following expressions can be obtained:

E[v(i)fρ(e(i))] = σ2
verf

(
ρ√

2Ee2(i)

)
E[ea(i)fρ(e(i))] = Ee2a(i) · erf

(
ρ√

2Ee2(i)

)
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Fig. 1: Theoretical and simulated MSE versus step-size curves for
the hyperslab-based APSM using correlated Gaussian input with
M = 256, φ = 0.8, and ρ = σ2

v .

E[f2
ρ (e(i))] = Ee2(i)erf

(
ρ√

2Ee2(i)

)
+ ρ2 − ρ2erf

(
ρ√

2Ee2(i)

)

− ρ
√

2Ee2(i)

π
exp

(
−ρ2

2Ee2(i)

)
Using the property that Tr(XY) = Tr(YX ) for any matrices X
and Y of compatible dimensions, employing the assumptions re-
garding the expectations in (13), and noting that Ee2(i) = Ee2a(i) +
σ2
v , we obtain the following result.

Theorem 2 (Steady-state performance) Consider data model (1).
Then an approximation to the steady-state MSE ξ of the hyperslab-
based APSM (6) is the unique solution of the nonlinear equation

ξ = σ2
v + Γµ

[
σ2
v + ρ2 − ρ

√
2ξ

π

exp(−ρ2/(2ξ))
1− erf(ρ/

√
2ξ)

]
, (14)

where

Γµ :=
µTr(EAi)

2Tr(EΠi)− µTr(EAi)
.

Remark 1 Observe that if q = 1, i.e., we only consider a single hy-
perslab, (14) reduces to the steady-state MSE equation for the SM-
NLMS algorithm [29]. Also, using the analyses presented in [29],
one can conclude that the steady-state MSE ξ is a monotonically in-
creasing function of the step-size µ and is a monotonically decreas-
ing function of ρ.

4. SIMULATION RESULTS

We now present simulation results to illustrate the theoretical results
presented in this paper. Consider the input vector ui to have a shift
structure with entries generated by passing an iid Gaussian process
{x(i)}i∈N with unit variance through the model

u(i) = φu(i− 1) + x(i), i ∈ N,

which is a first-order autoregressive process with a pole at φ. The
output d(i) is contaminated using a white Gaussian process v(i) with
its variance set so that its signal-to-noise ratio is 30 dB. The original

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−28

−26

−24

−22

−20

−18

Step−size µ

M
S

E
 (d

B
)

 

 

Simulation q = 4
Simulation q = 3
Simulation q = 2
Simulation q = 1
Theory q = 4
Theory q = 3
Theory q = 2
Theory q = 1

Fig. 2: Theoretical and simulated MSE versus step-size curves for
the hyperslab-based APSM using correlated Gaussian input with
M = 16, φ = 0.2, and ρ = σ2

v .

unknown system is generated randomly and all adaptive filter coeffi-
cients are initialized to zero. The regularization parameter ε is fixed
to 10−3. All simulation results are obtained by ensemble averaging
over 100 independent trials.

We simulate the steady-state behavior of the H-APSM for q =
1, 2, 3, 4 hyperslabs and compare the results with the theory as de-
scribed in Theorem 2. We consider an unknown system h◦ with tap
lengths M = 256 and M = 16 using poles φ = 0.8 and φ = 0.2,
respectively. The experimental values of the steady-state MSE are
calculated by averaging the last 200 samples after 105 iterations. The
theoretical steady-state MSE values are obtained numerically from
(14). The weighting used for the implementation of the H-APSM is
based on simple averaging, i.e., ωj = 1/q for every j.

We see that, as discussed in Remark 1, the steady-state MSE is
a monotonically increasing function of the step-size µ. Also, one
notices that given a fixed step-size, a lower steady-state MSE ξ is
obtained when one uses a larger number of hyperslabs. In addi-
tion to this feature, the low complexity of H-APSM compared to
other data-reusing algorithms makes it attractive for many applica-
tions. Moreover, observe that although increasing q results in an
increase in computational cost, the improvement in the steady-state
MSE is significant, especially for the first few increases in the num-
ber of hyperslabs. Although the mean-square performance analysis
is a challenging task (see, e.g., [22, 26–28, 39]), and despite the use
of restrictive simplifying assumptions, colored input or large values
of the step-size, we see that we still have a fairly close agreement
between theory and practice.

5. CONCLUDING REMARKS

We have presented the first mean-square performance evaluation of
the hyperslab-based adaptive projected subgradient method. Using
energy-conservation arguments, an expression involving the steady-
state mean-square error has been derived without restricting the input
data to a particular distribution. Simulations supported the theoret-
ical results. Due to space limitations, we have only presented the
steady-state performance of the H-APSM. The characterization of
its transient behavior will be considered elsewhere.
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