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ABSTRACT

This paper is concerned with the mean-square performance of the
hyperslab-based adaptive projected subgradient method, a set the-
oretic estimation tool that has been successfully applied in a wide
variety of signal processing tasks. Using energy-conservation argu-
ments, general performance results are derived without restricting
the regression data to being Gaussian or white. Numerical simula-
tions are provided to illustrate the theoretical developments.

Index Terms— Adaptive filters, energy conservation, mean-
square performance, error nonlinearity, data-reusing algorithms

1. INTRODUCTION

The hyperslab-based adaptive projected subgradient method (H-
APSM) [1,2] is a set theoretic estimation tool [3, 4] that has been
applied successfully in a variety of signal processing tasks such
as adaptive filtering [S], online classification [6-8] and distributed
learning [9-15]. The H-APSM has several appealing features that
include low complexity, robustness against noise, generality, and de-
sign flexibility, which make it well-suited for many applications. In
the context of adaptive filtering, its general form serves as a unifying
principle for a wide range of schemes that include the normalized
least-mean-squares (NLMS) algorithm [16], the set-membership
NLMS (SM-NLMS) algorithm [17], the affine projection algorithm
(APA) [18, 19], and other projection-based adaptive schemes [5].
Due to its applicability in a wide range of scenarios, there are
already several analytical results for the H-APSM [2, 8, 9, 20, 21],
although most of them are based on deterministic arguments or are
only concerned with the convergence of the estimates of the algo-
rithm. This paper presents yet another result on H-APSM, with a
focus on the evaluation of the mean-square performance of the H-
APSM as an adaptive filter. More specifically, a main objective of
this paper is to characterize the steady-state mean-square error of the
aforementioned set theoretic scheme. For this purpose, we rely on
well-known energy-conservation arguments [22], which are among
the most useful techniques for the analyses of the performance of
adaptive algorithms [23-28]. Though the inherent complexity of
projection-based algorithms makes the analysis challenging, we at-
tempt to provide a fairly general treatment of the mean-square per-
formance of H-APSM based on the earlier works [22, 25,26]. We
also illustrate that, compared to other data-reusing algorithms such
as the APA (see, e.g., [26,27]), the H-APSM manages to obtain a

lower steady-state MSE value even if one reuses more data in its im-
plementation. Moreover, since the H-APSM covers the SM-NLMS
algorithm as a special case, the present analysis, in particular the
stability result, can also be used to complement the results derived
earlier for the said algorithm [28, 29]. Numerical simulations are
shown to support our theoretical findings.

2. PRELIMINARIES

2.1. Notation

Throughout this paper, we denote the sets of all nonnegative integers
and real numbers by N and R, respectively. Vectors and matrices are
represented by boldface characters. We denote the Euclidean norm
by |||, the transpose of a vector or matrix by (-)", the identity matrix
of appropriate dimensions by I, the trace of a matrix by Tr(-), and
the expectation of a random variable by E[].

Let C be a subset of the Euclidean space R™ . If C'is nonempty,
the distance from h € R to C'is d(h, C) := inf |h — C|. If C
is also closed and convex, then, for every h € RM | there exists a
unique point Pc(h) € C, called the projection of h onto C, such
that |h — Pc(h)|| = d(h,C).

2.2. Data Model

Consider noisy measurements {d(%)}:en that arise from the linear
model

d(i) = ulh® + (i), M
where h° is an unknown vector that we wish to estimate, v(7) ac-
counts for modeling errors with variance denoted by o2, and u; €
RM denotes the regressor vector with a positive-definite covariance
matrix R := E[u;u]]. For simplicity, the noise v(4) is assumed to
be independent of w; for all j and of v(j) for all j # <.

2.3. The Algorithm

The general form of the adaptive projected subgradient method
(APSM) [2,5, 6,8-10, 15,30-38] can be described as follows [2].
Let ©; : RM — [0,400) (Vi € N) be a sequence of convex
functions and X C R™ be a nonempty closed convex set. For
any arbitrarily given h_; € K, the APSM generates a sequence of
estimates {h; }ien C K using the recursion
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where @,(hifl) S 86L(hl,1) = {'T’ S RM | @i(hi71)+7’T($—
hi—1) < O(x), Vo € RM} # () and 4 is the step-size or relax-
ation parameter. The APSM satisfies several remarkable properties
such as monotone approximation, asymptotic optimality and con-
vergence in norm [2]. In general, different design parameters can
lead to several efficient schemes that can be tailored for different
types of applications. The commonly used hyperslab-based version
H-APSM [2,5, 8] is obtained by choosing the following parameters.
Define ©; : R — [0, +00) by

©i(h) == > w;d’(h,S;), 3)
JET;

where {w; }jeg, € (0,1], 3o;c 7, wj = 1and Ji = {max(0,i —
g+ 1),max(0,i — g+ 1) +1,...,i}. Then choosing K = R™ in
(2) yields the scheme

(VieN) hi=hi1+ u< > w;Ps;(hi-1) — hi_1>, “
JETi
where p € [0, M;] and
Yjeq, willPs; (hic1) —hia|*
22567, wiPs; (hic1) = hia? e

1 otherwise.

M, =

Note that by using a different sequence of convex functions for (3),
the step-size range presented above can be doubled [2]. The property
set at each iteration in (4) is chosen to take the form of a hyperslab,
which is defined as follows:

Sji={h eRY : |d(j) —ujh| <p}, jEN

where p > 0 and S; = RM if u; = 0. The projection onto the
hyperslab S; is given by

d(i) — ulh —
h+(1)”u“ippuj, if d(j) —ulh > p
J
Ps,(h) = d(j) —u;h+ . .
s; (h) h-i—%'uﬁ 1fd(])—u;|-—h<—p
J
h, if h € Sjoru; =0.

&)

3. PERFORMANCE ANALYSIS

In order to apply energy-conservation arguments, we illustrate how
the H-APSM satisfies a form that is similar to some existing adaptive
filtering algorithms. Let e; (i) := d(j) — ] h;—1. Then (5) can be
written as

ej(i) —

Ps;(hi—1) =h;—1 + :0)
where f, : R — [—p, p] is the continuous piecewise linear function
defined by
[z +pl— |z = pl
folw) = AL

Thus, we can express (4) in the form

_ e; (i) — fo(e;(4))
hi=hi1+py i R e
JE€T; 7

where we added a regularization parameter € > 0 in the data nor-
malization of the algorithm. Now, introduce the quantities

Uz’ = [ul Ui—1 ... ui_q+1]

d; =[d(i)d(i—1) ... dGi —q+1)]"

W, = diag{wi,wi—1,...,wi—q+1}

. 2 -1 2 -1
N, = diag{(uwil* + &) (Juimgr |* +) 7'
and define the vector-valued estimation error
e;, = dz‘ — U;rhifl.

Observe that using the quantities above, the H-APSM is now seen to
satisfy the form

h; = hi_1 + pU;I1;(e; — fo(es)). (6)

where IT; = W; N ;. Itis clear from recursion (6) that the H-APSM
satisfies a description similar to other data-reusing adaptive algo-
rithms [27]. The main difference is the presence of the function f,
that operates component-wise on the estimation error e;. In rela-
tion to the terminologies in [25,27, 28], one may thus consider the
H-APSM as a data-reusing algorithm with error nonlinearities.

As the H-APSM is now seen to be similar to other data-reusing
algorithms, we may now rely on and build upon the performance
analyses developed for those schemes [26,27]. Define the weight-
error vector h; = h°® — h;. Then (6) can be rewritten in the form

hi=hi_1 — pUIIi(e; — foeq)). @)
Introduce the a priori and a posteriori weighted estimation errors
€wi=Ujhi 1 and e,;=U, hi.
Multiplying both sides of (7) by U from the left, we find that
epi = €ai — pU U:ILi(e; — f,(e:)). ®)
Combining (7) and (8), we get
hi + U(UU,) eqi = hio1 + Ui(U[U:) "ep.

Equating the weighted norms of both sides of the equation above
results in the energy-conservation relation

[Rill* + €ai(UTU:) " eas = lhiz1]|* + €, :(UTU:) ey

)
An important feature of the relation above is that it has been estab-
lished without using any approximations. This exact relation de-
scribes how the weighted energies of the error quantities evolve in
time. One also sees that equation (9) is the energy-conservation re-
lation that is also satisfied by standard data-reusing adaptive algo-
rithms [26,27].

In the next sections we exploit relation (9) to study the perfor-
mance of the H-APSM. In order to make the succeeding analysis
tractable, we shall sometimes rely on several simplifying assump-
tions that are usually invoked in the literature, as can be seen in,
e.g., [22,25-27].
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3.1. Mean Stability

Before we characterize the mean-square performance of the H-
APSM, we first determine mean stability conditions by using the
weight-error vector recursion (7).

Note that from (1), we have the relation

T
€ =é€ai+vi=U;hi_1+ v,

where v; := [v(i) v(i—1) ... v(i —qg+1)]". We can then express

recursion (7) in the form

hi=hi_1— MUiHiU;rﬁifl — pU i ILv; + pUIL fo(e5).
Taking expectations and assuming that

o the noise v(¢) is independent and identically distributed (iid)
and statistically independent of the regression matrix {U; },

we conclude that the mean of the weight-error vector evolves accord-
ing to the following dynamics:

Eh; = (I — yP)Eh;_1 + pE[U.IL f,(e:)], (10)
where

P .= E[U,ILU;|.

Since f,(e;) has bounded entries, the algorithm converges in the
mean if the matrix I — pP is a stable matrix. This holds if
2
)\max (P) ’

where Amax denotes the maximum eigenvalue of the symmetric ma-
trix P. Now, note that we can simplify P to

wiu; }

e+ [luif?

<

P |

Thus, by invoking the analysis on the same matrix P in [22] that
is used for the study of the stability of the NLMS algorithm, we
conclude that the H-APSM converges in the mean for any step-size
u < 2. Furthermore, taking the limit of (10) as ¢ — 400, we get
lim Eh; =h° =P~ " lim E[U,ILf,(e)].  (11)
1— 400 i— o0
Hence, we say that the H-APSM as an estimator is asymptotically
biased. Note that if we set p = 0, the second term on the right-
hand side of (11) vanishes. That is, if we instead use hyperplanes,
i.e., hyperslabs with p = 0, as property sets, the H-APSM becomes
asymptotically unbiased. The following theorem provides a charac-
terization of the stability of the H-APSM in the mean sense.

Theorem 1 (Mean stability) Consider data model (1). Then the
hyperslab-based APSM (6) asymptotically converges in the mean for
any initial condition given any step-size . < 2. Moreover, given any
p > 0, the algorithm is asymptotically biased. Furthermore, the
choice of weights {w;} does not affect the mean stability and con-
vergence speed of the H-APSM in the mean sense.

The observations described above regarding the effect of the
weights and the asymptotic unbiasedness for p = 0 coincide with
the result in [9] for the hyperplane-based APSM, a special case of
the H-APSM used in that work in the context of adaptive networks.
Note further that our result is not in conflict with the result estab-
lished in [21], where a stochastic analysis of the H-APSM has been
given, since convergence in the mean is a stronger condition that is
not implied by convergence in probability.

3.2. Mean-Square Performance

We now derive an approximation to the steady-state performance of
the H-APSM. In particular, our goal is to evaluate the steady-state
mean-square error (MSE), denoted by &, which is given by

€:= lim Ee’(i),

i—+ 00

where
6(1) = d(’L) — thFl

is called the output estimation error at time <.
Taking the limit of both sides of the energy-conservation relation
(9) and assuming the steady-state condition

E[|Ri]|* = Elhia|* asi— +oc,
we obtain the variance relation
Eleqi(UiU:) "ea;] = Eley (UTU:) epil.
Substituting (8) into the right-hand side of the equation above yields
HE[(e; — fo(e:)) Ai(ei — fo(e:))] = 2E[eq ITi(e; — fp(ei)l);a
where A; = I'IiUiTUiHi. If we neglect the dependency of fNL(Z,f

on past noises, we find, after some straightforward manipulations,
that

1{Elel ;Aieq:] + E[v; Aivi] — 2E[f,(ei) " Asea ]
—2E[f,(e:)" Aivi] + E[f,(e:)" Ai f,(e)]}
= 2E[e] ;IL;e;] — 2E[e) ;XL fo(e:)].  (13)
In order for us to evaluate the steady-state MSE of the H-APSM, we
need to deal with the expectations above. To handle this task we rely
on and build upon a simplifying assumption used in the analysis of

data-reusing algorithms, in particular, of the APA [26]. That is, we
assume at steady-state and for sufficiently small step-sizes that,

e U, is statistically independent of e, ;,

o Eleq el ;] ~ Ee2(i) - I, where e, (i) := ul hi_1,
e Elviv/|~o}- 1,

Elea,ifp(€:)"] = Elea(d) fo(e(d))] - I,
E[vifo(e:)'] = E[v(d) fo(e(i))] - I,

o E[f,(ei)fole)'] = E[ff (e(0))] - I.

Observe that we considered a simple form of the assumption in [26]
to make the resulting expressions simpler. In particular, we note that
other approximations for the matrices above can also be motivated
as in [26]. The expressions for the expectations involving f, on the
other hand can be computed directly as in [29]. Assuming v(%) is
white Gaussian, the following expressions can be obtained:

E[o(i)f,(e(i))] = af(#())

Elea (i) fp(e(i))] = Ee2(i) f(#())
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Fig. 1: Theoretical and simulated MSE versus step-size curves for
the hyperslab-based APSM using correlated Gaussian input with
M =256, ¢ =0.8,and p = o2.

B ) = e ert (s ) 7 = el

_, ZIEtjr2 (4) exp (215;[2)2(1‘))

Using the property that Tr(XY) = Tr(YX) for any matrices X
and Y of compatible dimensions, employing the assumptions re-
garding the expectations in (13), and noting that Ee? (i) = Ee2 (i) +
o2, we obtain the following result.

Theorem 2 (Steady-state performance) Consider data model (1).
Then an approximation to the steady-state MSE & of the hyperslab-
based APSM (6) is the unique solution of the nonlinear equation

_ 2 2 2 275 eXP(_Pz/(Qﬁ))
5_0v+1—‘#|:0-'v +p p\/:l—erf(p/\/%)}’ (14)

where
pTr(EA;)
Iy =

T 2Tr(EIL) — uTr(EA;)

Remark 1 Observe that if ¢ = 1, i.e., we only consider a single hy-
perslab, (14) reduces to the steady-state MSE equation for the SM-
NLMS algorithm [29]. Also, using the analyses presented in [29],
one can conclude that the steady-state MSE & is a monotonically in-
creasing function of the step-size | and is a monotonically decreas-
ing function of p.

4. SIMULATION RESULTS

We now present simulation results to illustrate the theoretical results
presented in this paper. Consider the input vector u; to have a shift
structure with entries generated by passing an iid Gaussian process
{z(%) }ien with unit variance through the model

u(i) = u(i — 1) + z(i),

which is a first-order autoregressive process with a pole at ¢. The
output d(¢) is contaminated using a white Gaussian process v(%) with
its variance set so that its signal-to-noise ratio is 30 dB. The original

1 €N,

_1gH == Simulation g = 4
- Simulation q =3
- - - Simulation q = 2
_2oH — Simulation g = 1
—e—Theory q =4
—&—Theoryq=3
|| ——Theoryq=2
—*—Theory q = 1

_o4} 1

MSE (dB)

-281 =

02 04 06 08 1 12 14 16 1.8
Step-size
Fig. 2: Theoretical and simulated MSE versus step-size curves for
the hyperslab-based APSM using correlated Gaussian input with
M =16,¢=0.2,and p = o2

unknown system is generated randomly and all adaptive filter coeffi-
cients are initialized to zero. The regularization parameter ¢ is fixed
to 1072, All simulation results are obtained by ensemble averaging
over 100 independent trials.

We simulate the steady-state behavior of the H-APSM for ¢ =
1,2, 3,4 hyperslabs and compare the results with the theory as de-
scribed in Theorem 2. We consider an unknown system h° with tap
lengths M = 256 and M = 16 using poles ¢ = 0.8 and ¢ = 0.2,
respectively. The experimental values of the steady-state MSE are
calculated by averaging the last 200 samples after 10° iterations. The
theoretical steady-state MSE values are obtained numerically from
(14). The weighting used for the implementation of the H-APSM is
based on simple averaging, i.e., w; = 1/q for every j.

We see that, as discussed in Remark 1, the steady-state MSE is
a monotonically increasing function of the step-size p. Also, one
notices that given a fixed step-size, a lower steady-state MSE ¢ is
obtained when one uses a larger number of hyperslabs. In addi-
tion to this feature, the low complexity of H-APSM compared to
other data-reusing algorithms makes it attractive for many applica-
tions. Moreover, observe that although increasing ¢ results in an
increase in computational cost, the improvement in the steady-state
MSE is significant, especially for the first few increases in the num-
ber of hyperslabs. Although the mean-square performance analysis
is a challenging task (see, e.g., [22,26-28,39]), and despite the use
of restrictive simplifying assumptions, colored input or large values
of the step-size, we see that we still have a fairly close agreement
between theory and practice.

5. CONCLUDING REMARKS

We have presented the first mean-square performance evaluation of
the hyperslab-based adaptive projected subgradient method. Using
energy-conservation arguments, an expression involving the steady-
state mean-square error has been derived without restricting the input
data to a particular distribution. Simulations supported the theoret-
ical results. Due to space limitations, we have only presented the
steady-state performance of the H-APSM. The characterization of
its transient behavior will be considered elsewhere.
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