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ABSTRACT

This paper addresses the problem of adapting a parser trained on
out-of-domain data for use in automatic speech recognition (ASR)
rescoring and error detection tasks. Using a self-training approach
and adaptation with weakly-supervised data, we obtain improve-
ments in ASR rescoring of confusion networks. Features extracted
from the parser output are also used to improve detection of general
ASR errors and out-of-vocabulary word regions in conjunction with
a maximum entropy classifier.

Index Terms— Parsing, speech recognition, error detection,
OOV detection

1. INTRODUCTION

Several studies have investigated the use of parsing for improving
speech recognition. Language models containing syntactic informa-
tion have been used successfully for decoding [1, 2, 3], discrimina-
tive n-best rescoring [4], and joint parsing and speech recognition
[5]. Improvements in word error rates have been obtained in several
studies, for both read news [6] and conversational speech [5, 7, 8, 9].
(Although conversational speech lacks the complexity of structure
of formal language, it has greater acoustic confusability that even
simple syntactic structure can help resolve.) These good results are
mostly obtained in conditions where treebanked data is available that
is reasonably well matched to the target domain. As for many lan-
guage processing tasks, parsing performance degrades when there is
a domain mismatch, which is the case for many scenarios.

In our prior work, we investigated the use of parsing for out-
of-vocabulary (OOV) word detection in speech recognition [10]. In
that study, we found that a parser trained on a mismatched domain
was still useful for identifying OOVs, even though the same parser
led to degraded speech recognition transcripts if used in a rescoring
framework. Motivated by work on parsing that shows a benefit from
semi-supervised training [11, 12, 13], this work explores its use both
for improving speech recognizer accuracy as well as OOV (and er-
ror) detection. In addition, we look at weakly supervised methods
that leverage known labels in the OOV/error detection task.

Because of our interest in both error detection and correction
with the parser, our framework involves rescoring a word confusion
network [14], rather than the single hypotheses or lattices used in
other work when separately addressing recognition or OOV detec-
tion. The use of confusion networks introduces a different type of
mismatch with respect to standard treebanked data, so we also ex-
plore semi-supervised learning to address this issue.

In the next sections, we outline the overall system architecture
and describe the domain differences, followed by a more detailed
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description of the system and adaptation strategies. Experimental
results are reported for the English side of recognition in a speech
translation task, showing a significant benefit to semi-supervised
training for both transcription and OOV/error detection.

2. TASK AND SYSTEM OVERVIEW

For both error and OOV detection we employ a three-stage process,
modeled after the approach used in [10]. The system takes in ASR
output represented as a word confusion network (WCN), i.e. a se-
quence of slots, with each slot containing a list of words (arcs) and
their confidences. An initial slot-level classification stage augments
the WCN with error or OOV arcs (henceforth referred to as “error”
arcs in general for simplicity). A parser stage identifies the optimal
path through the WCN according to its parser model, and a second
classification stage refines the error predictions. Unlike in [10], the
last stage here performs a second round of slot-level classification,
with additional features obtained from the parser output (described
in more detail in section 3.2). This last stage classifier is similar to
the use of a conditional random field with syntactic language model
features [15] for OOV detection. The output of the system is a WCN
annotated with errors or OOVs, respectively, and rescored to obtain
a new best path through the structure.

Since one long word in the lattice representation of ASR output
may correspond to a sequence of short words in another path through
the lattice, any WCN slot may also include a null arc, correspond-
ing to a null path for that slot. These null paths are terminal nodes
from the perspective of the parser, which necessitates some changes
to the parser grammar and creates a mismatch with respect to the
treebanked data.

Probably a more important mismatch is between the domain of
interest (the “target”) and the domain (or domains) used to train the
parser (the “source”). This mismatch manifests itself both in terms
of word usage (with words in the target domain which are not present
in the source treebank acting as OOVs from the parser’s perspective)
and sentence structure (influencing the quality of the higher-level
syntactic structures generated by the parser).

The target domain represents a speech-to-speech translation
task involving a variety of scenarios from medical aid to reconnais-
sance, represented by the TRANSTAC corpus, with our experiments
focused on American English. The speech consists of relatively
short utterances with a low formality level, drawn from two sources:
TRANSTAC conversations and SRI recordings of read speech with
topics selected to match the TRANSTAC data. TRANSTAC sen-
tences tend to be longer and contain few OOV errors. The SRI ut-
terances contain more OOVs but no disfluencies and are (relatively)
shorter. A subset of speech data is used for training WCN aspects of
the parse, and additional TRANSTAC language model training data
is used for adapting the parser in semi-supervised learning. We train
the parser using a treebank drawn from Switchboard [16] and Fisher
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[17] sentences, released by the Linguistic Data Consortium.1 The
parse trees were edited to remove punctuation and lower-case all the
words for a better match to the ASR output.

While there are substantial differences in speaking style between
the target domain corpora and Switchboard, perhaps the more signif-
icant difference for the parser is in terms of the vocabulary mismatch,
as shown in table 1. The vocabulary mismatch is with respect to the
WCN training set. The filled pause and repetition rates in the table
indicate differences in disfluencies: the TRANSTAC data is more
like human-computer speech, which tends to be less disfluent.

Table 1. Corpus statistics
Statistic Treebank LM Train WCN Train

# Utterances 16519 95916 951
Ave. utt. len. 4.9 18.1 10.3

Voc. size 4233 17728 2062
Voc. overlap 977 1551 2062

% filled pauses 2.7 0.41 2.3
% repetitions 1.3 0.26 0.8

3. INTEGRATION OF PARSING AND SPEECH

In our previous work [10], the parser received as input the WCN rep-
resentation of ASR output, with the goal of detecting regions in the
ASR output which correspond to OOV words. We will follow this
approach here, though unlike [10], we generalize the setup to include
all error types as an additional task; we also perform rescoring of the
WCN for error correction.

We use a modified version of a probabilistic context-free gram-
mar (PCFG) parser with dependency-based rescoring. The PCFG
rules learned from treebank corpora are augmented with specific
rules required to parse WCN structures. In particular, for each con-
stituent X we add a pair of binary grammar rules, X → X NULL
and X → NULL X, plus a single rule NULL → null to generate
the terminal corresponding to the null path arcs. The error arcs are
generated through two new rules, ERROR → ERROR ERROR to
grow the error region and ERROR → error to generate the termi-
nals, plus a unary rule X → ERROR for each constituent X.

The weights on the word and null arcs are obtained directly from
the ASR system. The weights on the error arcs are obtained from
the first stage error detection system, and will act as a prior on the
probability that the original WCN slot does not contain the correct
arc. We use a prior from the first stage OOV detection system in
conjunction with the full confusion network for training a parser that
can detect OOVs. To detect errors, we use a prior from the first stage
error detection system and parse a pruned WCN which contains only
the 1-best arc and the error arc in each slot.

3.1. Modeling Approach

To score each possible parse, we augment the base PCFG model
with a discriminative log-linear model for the additional rules used to
handle null arcs and error arcs. The PCFG is learned from counts of
rules in the treebank. As in [10], we assign the unary rules NULL →
null and ERROR → error the default probability 1 and all other
added rules probability 0.1, then renormalize all the weights.

The log-linear model used for the null arc and error arc rules is
structured so that each rule a→ b used in a parse y corresponds to a
feature φ(a→ b), with weights for the rules from the original PCFG

1http://catalog.ldc.upenn.edu/LDC2009T01

being fixed to 0. Thus, the probability of a full parse y of the WCN
w given model parameters θ is:

p(y|w, θ) = p(y|w, θPCFG)p(y|θLL) (1)

=
Y

a→b∈y

p(b|a, θPCFG)
exp(φ(y) · θLL)P
y′ exp(φ(y′) · θLL)

(2)

where y and y′ are both parse trees with terminals forming a path
through the WCN w.

The log-linear model feature weights θLL are computed using an
averaged online perceptron learning algorithm [18]. The objective of
the log-linear model training is task-specific: minimum word error
rate or maximum OOV or error detection rate . The parse probability
p(y|WCN, G) is computed using the inside-outside algorithm. Since
all the log-linear model features φ(a → b) are local, the log-linear
model evaluation can be done during the population of the chart.

3.2. Feature Extraction

In addition to using the parser output to label each slot in the confu-
sion network as containing an error or not, we also extract features
from the best tree produced by the parser. In particular, we focus
on extracting features which capture differences between a tree pro-
duced by a parser which models ASR errors and one that does not,
under the assumption that the local structure in error-free regions of
the utterance should be similar in the two cases, but the structure
in error regions should be different. ASR null arcs will be modeled
explicitly in both the error-aware parser and the error-free parser.

3.2.1. Dependency Tuples

We use dependency information to compare the local structure of the
two trees. Given a constituent parse tree for an utterance, we obtain a
dependency parse tree by running a standard head-finding algorithm
[19]. The dependency information allows us to construct a tuple for
each slot in the confusion network, containing:

• the word selected by the parser for that slot
• the word selected by the parser for the slot acting as its head
• the syntactic category for each of the two words
• the root of the largest subtree spanning the slot but not its

head
• the root of the smallest subtree containing both the slot and

its head

For each slot, we compare the two dependency tuples extracted from
the two parser models by counting the number of common elements.

3.2.2. Inside Score Pairs

We use inside score information to capture the confidence of the
parser regarding the structure surrounding a given WCN slot. For
each slot, we are interested in measuring the performance of the
non-error parser both in the vicinity of that slot (the local structure)
and on the periphery of the error region it corresponds to, if any (the
structure overlapping error region boundaries), with the intuition that
a difference in confidence between the two parsers in correspond-
ing regions will provide information about whether to trust the error
predictions made by the error-aware parser. We compute two inside
score-based features:

• local score: the inside score of the smallest non-trivial subtree
(i.e. with root higher than pre-terminals) in the non-error tree,
with a word in the current slot as one terminal in the tree;
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• boundary score: the inside score of the smallest subtree in
the non-error tree that contains the current slot and an error
region boundary slot, minimizing over boundary slots.

4. DOMAIN ADAPTATION

We focus on two methods for addressing the domain differences:
self-training of the PCFG and weak task supervision for training the
log-linear model.

4.1. PCFG Self-Training

We perform self-training to improve the parser vocabulary and sen-
tence structure coverage of the target domain. For each sentence in
the target domain, we obtain the highest-scored parse tree, and add
it to the treebank if its score is above a certain threshold. We retrain
the model after traversing the entire unlabeled corpus, then repeat
the procedure. The threshold for each iteration is tuned using a held-
out set. The procedure terminates when either no additional trees are
added to the treebank or the improvement on the held-out set drops
below a pre-set threshold.

A variation on the method allows us to parse entire confusion
networks instead of single hypotheses. Since the highest-scoring
parse tree may not correspond to the optimal path through the con-
fusion network, we instead select the highest-scoring parse tree with
the restriction that the path is optimal relative to the reference string.
Preliminary experiments showed that this approach did not outper-
form the standard method.

4.2. Weak Task Supervision

As we do not have hand-annotated parse trees for the target domain,
we instead apply a form of weak, task-driven supervision for training
the log-linear component of the parsing model. In all cases we use
the word error rate (WER) of the path corresponding to the highest-
scoring parse tree for each confusion network as the objective, with
variations as follows:

• when the parser is used as a rescoring language model, we
restrict the path chosen by the parser to contain only regular
words or null arcs;

• when the parser is used for detecting errors, the path may
contain error arcs in addition to regular words and null.

The parser model update statistics are accumulated over the
course of each iteration through the target domain training data,
with a new model generated at the end of the procedure. In practice,
only 5-10 iterations are needed to maximize the objective on the
development set.

As described previously, we use two parser models, one which
can produce trees containing error terminals and one which does
not. The two models may be trained independently, starting from
the raw PCFG model trained only on the treebank data, or using the
non-error model as a starting point for training the additional error-
related rule weights.

5. EXPERIMENTS

5.1. Experiment Paradigm

We use confusion networks produced by an extension of the SRI Dy-
naspeak [20] speaker-independent speech recognition system. Two
separate systems are run - a Gaussian mixture model (GMM)-based

system and a deep neural network (DNN)-based system. Lattices
from the DNN system are converted to confusion networks using the
SRILM toolkit [21] and augmented with arcs from the best GMM
hypothesis whenever they do not appear in the corresponding DNN-
based WCN slot. Slot-level ASR confidences are produced with a
DNN system using features related to the confusion network struc-
ture and features from a recurrent neural network (RNN) language
model [22].

Both slot-level classification stages use a maximum entropy
(MaxEnt) classifier built with the MALLET [23] toolkit. The first
MaxEnt stage uses as features a set of confusion network structure
statistics, including the slot-level posterior mean and variance, the
position of the slot in the sentence, the presence of null arcs, and
word class features. The set of features used is described in more
detail in [10]. We augment this feature set with the DNN-RNN
confidence scores and features indicating the presence of arcs from
the GMM system in the current, preceding, and following slot. The
third stage augments the first stage features with the dependency and
inside score features obtained from the parser.

We split the ASR output data 60-20-20 into training, develop-
ment, and evaluation partitions, with the training portion used for
parser self-training and for training the MaxEnt models. We tune
hyperparameters for all systems and report all intermediate results
on the development set. The eval set is reserved for reporting the
final results using the best system configurations.

5.2. Rescoring to Reduce WER

We evaluate the parser’s ability to improve ASR output by rescor-
ing the confusion networks, using the path through the confusion
network corresponding to the best parse tree as the new best ASR
hypothesis. We compare the 1-best obtained from the raw confusion
networks (our baseline) with the best paths produced by a parser
trained on only the CTS treebank (similar to the configuration in
[10], but not directly comparable due to ASR system improvements),
as well as parser models adapted via self-training with either or both
of the LM training and ASR output (“WCN training”) corpora. We
also investigate whether explicitly adapting the null rules helps. We
use as evaluation measure word error rate (WER), computed using
the SCLITE toolkit [24].

The results are summarized in table 2. We see that self-training
using the WCN training set outperforms the baseline, whereas us-
ing the LM training corpus hurts, though the combination of the
two outperforms the other configurations, both when we perform
an additional round of log-linear model tuning and with the default
null rule weights. Performing the null rule weight adjustments in
fact hurts over just modeling their weights using self-training (when
available), likely due to overtraining, though the performance drop
is lower when both corpora are used in self-training, as a smaller
percentage of self-training data will contain null arcs. The best con-
figuration outperforms the no-parsing scenario, demonstrating that
adapting the parser model to the target domain allows us to resolve
some of the domain differences which made the initial parser model
not useful for improving recognition accuracy.

Table 2. Parser rescoring results, dev set WER (baseline: 13.8)
Configuration PCFG-only PCFG+DEL rules
No Self-Train 15.1 16.4

LM Train 15.6 18.0
WCN Train 13.5 16.2

LM+WCN Train 13.4 14.0
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5.3. OOV and Error Detection

We evaluate the contribution of parsing to both OOV and error de-
tection, both in using the parser itself as an error (or OOV) predic-
tor, and in using features derived from parse trees for the second
round of MaxEnt classification. We report a modified word error
rate (denoted as WER∗) as well as F-score of the two classification
tasks. For WER∗ results, we collapse all OOV words in the reference
strings to a single “OOV” token and similarly mark all OOV (or er-
ror) regions detected by the classifiers with the same “OOV” token.
By reporting both WER∗ and F-score, we can better account for the
lengths of the errorful regions detected - in particular, whether error
regions are too large and end up engulfing other correct words.

We compare self-training results using three configurations: LM
training set, ASR WCN training set, or the two sets combined against
not performing any self-training. In all cases, after the initial self-
training of the PCFG model, additional training of the log-linear
model was performed, to obtain a second parser model capable of
parsing WCNs augmented with error arcs. The training of the log-
linear model was done separately for OOV detection and for general
error detection.

Table 3. Best self-training results, dev set OOV detection
SelfTrain Configuration WER∗ F-score

None 1st ME 12.8 58.9
None 2nd ME 11.8 65.4
LM 2nd ME 11.7 63.0

WCN 2nd ME 11.8 61.7
LM+WCN 2nd ME 10.7 66.9

Results for OOV detection over the full WCN are presented in
table 3. For each self-training data source, we present the best WER∗

and F-score results. All configurations which involve the parser and
2nd stage of ME classification outperform the initial ME stage alone.
Comparing the various self-training configurations, we observe that,
as in the rescoring case, each of the LM training set and the ASR
WCN training set, in isolation, produce no significant improvement
over the parser trained directly on the hand-annotated treebank; how-
ever, in combination, the two outperform the case of no self-training,
both in WER∗ and in OOV detection F-score. The same parser
model training configuration achieves the best WER∗ and OOV F-
score results.

Table 4. Best self-training results, dev set error detection
SelfTrain Configuration WER∗ Configuration F-score

None 1st ME 12.4 1st ME 68.5
None Parser 11.8 2nd ME 72.4
LM Parser 12.0 2nd ME 72.4

WCN 2nd ME 11.6 2nd ME 71.9
LM+WCN Parser 12.1 2nd ME 72.3

Results for error detection over the 1-best path through the con-
fusion network are shown in table 4. As in the case of OOV de-
tection, the second MaxEnt classification which uses parse features
outperforms error detection using the initial feature set alone. How-
ever, the self-training results are mixed, with the LM-only training
matching the configuration with no self-training, and the other two
configurations underperforming slightly. On the other hand, when
scoring using WER∗, we find that the self-training using the ASR
WCN set slightly outperforms the other configurations. Further-
more, whereas for OOV detection we found that the best WER was

obtained from the 2nd MaxEnt classifier, for 1-best error detection
we find that the parser outperforms the corresponding 2nd MaxEnt
stage in most cases. We attribute this to the parser having an easier
task of discriminating between only two arcs in each “slot” (the 1-
best arc or the error arc), whereas in the OOV detection case, parsing
with full confusion networks means the parser often has many more
choices to consider, especially in regions corresponding to OOVs.

Table 5. Final system results, eval set
System Resc . OOV Error

WER WER∗ F-score WER∗ F-score
baseline (1st ME) 14.6 12.6 64.7 12.1 67.1
base parser system 15.9 12.5 65.2 12.0 67.9
best parser system 14.2 11.7 65.9 11.6 68.9

The final results on the evaluation set are presented in table 5.
The best configurations according to tuning on the dev set outper-
form both the first stage MaxEnt system and the baseline parser and
second MaxEnt stage systems. In particular, the rescoring improve-
ment carries to the eval set, whereas the rescored 1-best produced
by the baseline parser performed significantly worse than the origi-
nal WCN 1-best. The baseline parser system outperformed the first
stage MaxEnt system in the OOV and error detection tasks, with the
best self-training system providing additional improvements.

Table 6. OOV detection word F-scores, grouped by sentence length
Configuration Sentence lengths

0-4 5-14 15-
1st ME 47.1 55.0 14.0

base parser 53.3 54.4 11.6
base 2nd ME 50.0 59.9 15.2
best parser 44.4 29.3 4.5

best 2nd ME 72.7 63.3 11.7

To examine the contribution of the parser at different sen-
tence complexity levels, we evaluate the performance of the parser-
enhanced OOV detector systems, grouping the results by sentence
length. The word-level F-score development set results for the
baseline system and the best OOV detector using self-training are
presented in table 6. In both systems, the parser performs worse than
the MaxEnt systems (including the first stage) on the long sentences.
On short and medium sentences, the first MaxEnt stage performs
comparable to the parser and second MaxEnt stage. After self-
training, the parser performs worse on its own, but the parse features
help in second stage MaxEnt systems. The best final MaxEnt sys-
tem far outperforms the baselines on short and medium sentences,
though it performs slightly worse on long sentences.

6. CONCLUSIONS

We find that domain adaptation helps improve the final performance
on both rescoring and error/OOV detection tasks. Self-training us-
ing a combination of corpora to improve vocabulary coverage and
match the structure of the test data provides the biggest gains for
rescoring and OOV detection. The self-training configurations help
in particular with final-stage OOV detection in all but the longest
sentences. Future work will explore new modeling approaches, such
as using multiple error arcs to jointly detect and distinguish between
different types of ASR errors, and the use of global features in the
log-linear model used to augment the PCFG.
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