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ABSTRACT 
 
Maximum a posterior (MAP) adaptation is one of the 
popular and powerful methods for obtaining a speaker-
specific acoustic model. Basically, MAP adaptation needs a 
data storage for speaker adaptive (SA) model as much as 
speaker independent (SI) model needs. Modern speech 
recognition systems have a huge number of parameters and 
deal with millions of users. To reduce the data storage for 
SA models, in this paper, we propose a constrained 
maximum likelihood estimation-based speaker adaptation 
with L1 regularization. By the proposed method, we can 
more efficiently perform the model adjustments for SA 
models without almost any loss of phone recognition 
performance than the conventional sparse MAP adaptation 
method. 
 

Index Terms— Speaker adaptation, maximum a 
posterior adaptation, constrained MLE, L1 regularization, 
Euclidean projection on L1 ball 
 

1. INTRODUCTION 
 
Current speech recognition systems using hidden Markov 
models (HMMs) have employed speaker adaptation methods 
to improve robustness against speaker variability. There 
have been various adaptation techniques such as maximum 
likelihood linear regression (MLLR) [1, 2], eigenvoice (EV) 
adaptation [3, 4], and maximum a posteriori (MAP) 
adaptation [5]. Typically, MLLR and EV-based methods are 
well known adaptation techniques for very limited 
adaptation data (10 seconds to 10 minutes) and require small 
amount of speaker-specific parameters compared with a 
speaker independent (SI) model. On the contrary, it has been 
known that MAP adaptation is good for medium amount of 
adaptation data (20 minutes to 10 hours) and requires a 
number of parameters as much as a SI model has. 

In [5], MAP adaptation employs Bayesian priors for the 
Gaussian components and the priors have some effects same 
as L2 norm regularization. Typically, L2 norm 
regularization may cause many small parameter adjustments 
in the adaptation processing. Olsen et al. [6, 7] showed that 
most of the adapted parameters are not closely related to 
speech recognition performance. So they proposed sparse 
MAP adaptation for limiting the redundant parameter 

adjustments. In order to obtain the best results in the sparse 
MAP adaptation, they controlled several parameters which 
are related to hyperparameters for adaptation and 
Lagrangian multipliers for sparsity. As the number of 
parameters increases, it becomes hard to find optimal 
parameter values for the best performance of recognition 
systems. To cope with this difficulty, we reinterpret the 
MAP adaptation as a constrained optimization problem and 
propose a constrained maximum likelihood estimation 
(CMLE)-based speaker adaptation method with L1 
regularization. The proposed method is a MAP-like 
adaptation algorithm which considers simultaneously 
controlling both regularization and sparsity and, converges 
to maximum likelihood estimation as the amount of 
adaptation data increases. 
 

2. GEOMETRIC REVIEW OF MAP ADPATATION 
 
The basic approach of obtaining a speaker-adaptive (SA) 
acoustic model is to derive the SA model by adapting a 
speaker independent (SI) model [5]. In order to adapt the SI 
model, the GMM-based MAP adaptation process is well 
described in [8]. Sufficient statistics computed by the 
maximum likelihood criterion are used to obtain the SA 
model as follows.  

 
        MAP SI
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where ακ, κ∈{w, μ, ν}, is the adaptation coefficients for the 
weights, means, and variances, respectively, η is a scale 
factor which enables summation of the adapted mixture 
weight to be unity, Sθ,i indicates the sufficient statistics for 
each Gaussian model parameter, and vi is the variance vector 
which constitutes diagonal components of  covariance 
matrix. The adaptation coefficient ακ is used to determine the 
balance between the sufficient statistics and SI model 
parameters. The adaptation coefficient is given 

( )i i in nκ κα τ= + , where ni is the posterior sum of mixture i 
and τκ is a hyperparameter. 

As can be seen in equation (1)-(3), it is noticeable that 
all adapted model parameters are computed by the same 
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form of interpolation and the interpolation operation can be 
treated as a regularization of MAP adaptation. From this 
point of view, MAP adaptation can be regarded as a 
constrained optimization problem [9], such that 
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where φi denotes a vector moving from SI model, Si and θi

SI 

represents sufficient statistics and SI models, and ||·||2 is L2 
norm. In the optimization problem, note that Si and θi

SI are 
used for shared notations of weight, mean, and variance. 
Finally, we get the adapted model parameter given by 
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In (5), we ignore the scaling factor in (1) and the vector 
subtraction of squared adapted mean vector in (3). In (1), the 
equation for adapted weight is defined in 1-dimensional 
space. Since, however, we can also treat the weight 
components as a vector form in a Gaussian mixture model, it 
is also possible that the weight vector interpolation also can 
be interpreted as the constrained optimization problem. This 
constrained optimization problem is described in Fig. 1 from 
a geometrical perspective. As can be seen in Fig. 1, the 
shaded region implies constraint part of the optimization 
problem and the interpolation form of (1)-(3) is totally 
caused by L2 norm-based constraint. This is the reason why 
MAP adaptation is also called L2 regularization and the L2 
norm-based constraint causes most of the small and 
redundant adjustments which can be negligible in terms of 
the speech recognition performance. 

3. SPARSE MAP ADAPTATION 
 
In [6], Olsen et al. showed that most of the adapted 
parameters, whose differences between the SA and the SI 
models were quite small after MAP adaptation, were 
irrelevant to speech recognition performance. It was also 
mentioned that, during adaptation, ignoring the small 
adjustment could be helpful to save on data storage for the 
SA models and could also improve recognition performance. 
For these reasons, the adapted model parameters are selected 
by constrained optimization problem in sparse MAP 
adaptation. The constrained optimization problem is 
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where Θ indicates the total parameter set of acoustic model, 
G is the number of Gaussians, D is the dimension of the 
acoustic feature vector, θi,d ={μi,d, vi,d} is a set of parameters 
for dimension d of Gaussian i, and ||θi,d – θi,d

SI
  ||0 ∈{0, 1, 2} 

is L0 norm. L(·) is the log likelihood function that calculates 
likelihood of feature vectors with given model parameters. 
Comparing (4) and (6), the optimization problem in (6) 
allows only N parameters to be changed by the constraint. 
Since mixture weight is not considered in this adaptation 
method, hyperparameter set consists of ξ∈{μ, ν}. Since the 
objective function and constraints in (6) are composed of 
direct sums over i and d, the problem can be solved exactly. 
The optimal solution for an N can be obtained by a greedy 
search for N parameters that most increase the objective 
function. For example, when N = 1, it is clear that the single 
MAP-adapted parameter causing the largest increase in the 
objective function is selected for the SA model and all other 
remaining parameters take SI model parameters. 

From (6), we can alternatively consider maximizing the 
Lagrangian function given by 
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where λ is a Lagrangian multiplier. As mentioned in [6], for 
fixed λ, (7) can be fully decoupled across i, d and thus each 
sub-problem is given as follows: 
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For computational benefit, it is useful to minimize the 
following equation 
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Fig. 1. Geometric interpretation for MAP adaptation 
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Besides L0 norm in (9), L1 norm also can be applied to the 
optimization problem. Similarly, in [7], new methods using 
the combination of L0 and L1 norm for the optimization 
problem were also proposed.  
 

4. PROPOSED METHOD 
 
Sparse MAP adaptation needs to control additional 
Lagrangian multipliers as well as hyperparameters. It may 
cause difficulties in finding optimal values showing the best 
recognition performance.  To obtain the sparsity and 
regularization effect simultaneously, we were inspired to 
apply L1 norm-based constraint from interpreting the MAP 
adaptation as a constrained optimization problem. Based on 
the idea, CMLE-based speaker adaptation with L1 
regularization is proposed in this paper. The proposed 
optimization problem is given as follows 
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where ||·||1 is L1 norm. As can be seen in (11), the idea was 
mainly based on (4) from which we changed the L2 norm-
based constraint into the L1 norm-based constraint. This 
type of constrained optimization problem is typically called 
the problem of Euclidean projection onto the L1 ball [10]. 

By writing the Lagrangian form of (11), we have 
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Compared with sparse MAP adaptation, strong duality holds 
for (11), and the primal and dual optimal values are equal. 
Thus, we can determine the primal optimal points for model 
parameters by finding dual optimal point for Lagrangian 
multiplier. When the dual optimal point λ* is known, we can 
find the primal solution by 
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Since each dimension can be fully decoupled into individual 
variable, we have 
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which leads to 
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where sign(r) returns +1 if r ≥  0 and –1 otherwise. To find 
dual optimal point λ*, the bisection algorithm is typically 
used and the detailed procedure for obtaining λ* is well 
described in [10]. 
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Fig. 3. Illustration of the Euclidean projection 
onto the L1 ball 
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Fig. 2. Geometric interpretation for CMLE with  
L1 regularization 
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With the proposed method, we can simultaneously 
control the sparsity and regularization effect by choosing 
hyperparameters τκ. Furthermore, our method is a more 
generalized sparse adaptation method since every model 
parameter including mixture weights can be adapted in our 
constrained optimization problem. In Fig. 2, the effect of L1 
norm-based constraint is illustrated by a geometrical 
perspective. The shaded region in Fig. 2 is the constraint 
part of the optimization problem (11) and it is also expanded 
by posterior sum ni same as (4) in MAP adaptation. As can 
be seen in the figure, it is also observed that the L1 ball acts 
as a sparsity promoting regularizer. From the property, we 
can obtain the sparsely updated SA model. In addition, Fig. 
3 shows how the Euclidean projection onto the L1 ball 
works with three different cases of sufficient statistics. From 
the Fig. 3, we can notice that the adapted model is very 
sparsely updated from SI model, when ni is small in 
comparison with the hyperparameter τκ and vice versa. 
 

5. EXPERIMENTS 
 
The experiments were performed on the ETRI Korean 
conversation speech database which had been collected at 16 
kHz sampling rate and 16-bit resolution by two types of 
smart phone devices in clean environmental condition. This 
database contains a total of 52,500 sentences, which are 
composed of 150 sentences spoken by each of 350 speakers, 
and each sentence is composed of about 4 to 5 seconds long. 
We used 45,000 sentences of 300 speakers for constructing 
the SI triphone models and remaining speech data of 50 
speakers for test. We used 13 dimensional Mel-frequency 
cepstral coefficients and their first and seconds derivatives 
as a feature vector. For adaptation, we used 100 utterances 
per speaker and remaining 50 utterances were used for the 
phone recognition test. We applied phone level unigram 
language model of 39 Korean phonemes for our experiments. 
The SI model had 11,848 tied-state triphone HMMs 
including 3 states per each HMM and 32 Gaussian mixtures 
per state. For each SA model, we only adapted the mean 
vector from the SI model. 

All tests are performed according to various values of 
hyperparameter τ. In order to solve the proposed 
optimization problem, we used SLEP toolbox in [11]. In 
Table 1, SMAP and CMLE-L1 indicate the results of the 
sparse MAP adaptation and proposed method, respectively, 
and phone error rate (PER) and sparsity of each method are 
summarized. For the comparison, we did our experiments on 
SI model and MLLR adaptation. For MLLR, we used 40 
regression classes which also showed the best PER results 
from the same set of adaptation and test data. For SMAP, we 
used L0 norm based algorithm and λ = 0.005 in (10) which 
also showed the best performance for SMAP. From our 
experimental results, the proposed method can keep more 
model parameters unchanged (91.21% (SMAP)  95.28% 
(CMLE-L1) in sparsity) compared with SMAP while 

maintaining comparable recognition performance in PER 
compared with the results of MAP. This indicates that only 
4.72% of total model parameters are the key parameters 
influencing recognition performance.  

 
6. CONCLUSION 

 
In this paper, MAP adaptation was reinterpreted as a 
constrained optimization problem with L2 regularization. 
From this point of view, we proposed CMLE-based speaker 
adaptation methods with L1 regularization. By the proposed 
method, it is observed that we can achieve more sparsity 
than L0 norm-based SMAP without almost any loss of PER 
compared with MAP. In addition, it is also shown that we 
can control both sparsity and regularization only by 
adjusting the hyperparameter without any additional 
parameters. Further work is to finish the tests with adapted 
weights and variances and to find combinatorial constraint 
which can improve the recognition performance and sparsity 
more.  
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