
REAL-TIME ONE-PASS DECODING WITH RECURRENT NEURAL NETWORK LANGUAGE
MODEL FOR SPEECH RECOGNITION

Takaaki Hori, Yotaro Kubo, and Atsushi Nakamura

NTT Communication Science Laboratories, NTT Corporation
2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
{hori.t, yotaro.kubo, nakamura.atsushi}@lab.ntt.co.jp

ABSTRACT

This paper proposes an efficient one-pass decoding method for real-
time speech recognition employing a recurrent neural network lan-
guage model (RNNLM). An RNNLM is an effective language model
that yields a large gain in recognition accuracy when it is combined
with a standard n-gram model. However, since every word proba-
bility distribution based on an RNNLM is dependent on the entire
history from the beginning of the speech, the search space in Viterbi
decoding grows exponentially with the length of the recognition hy-
potheses and makes computation prohibitively expensive. Therefore,
an RNNLM is usually used by N -best rescoring or by approximat-
ing it to a back-off n-gram model. In this paper, we present another
approach that enables one-pass Viterbi decoding with an RNNLM
without approximation, where the RNNLM is represented as a pre-
fix tree of possible word sequences, and only the part needed for de-
coding is generated on-the-fly and used to rescore each hypothesis
using an on-the-fly composition technique we previously proposed.
Experimental results on the MIT lecture transcription task show that
our proposed method enables one-pass decoding with small over-
head for the RNNLM and achieves a slightly higher accuracy than
1000-best rescoring. Furthermore, it reduces the latency from the
end of each utterance in two-pass decoding by a factor of 10.

Index Terms— Speech recognition, Recurrent neural network
language model, Weighted finite-state transducer, On-the-fly rescor-
ing

1. INTRODUCTION

Language models are indispensable for large-vocabulary continuous-
speech recognition. Such models, which are usually based on
n-gram statistics, provide prior probabilities of hypothesized sen-
tences to disambiguate their acoustical similarities. To build an
n-gram model, text corpora are used to estimate the probability of a
word’s occurrence conditonal on the preceding n-1 words, where n
is typically 3 or 4.

On the other hand, continuous space language models based on
neural networks have attracted increased attention in recent years
[1, 2, 3, 4, 5]. With this approach, word indices are mapped to a
continuous space and word probability distributions are estimated as
smooth functions in that space. Consequently, the approach makes it
possible to provide better generalization for unseen n-grams [1]. A
recurrent neural network language model (RNNLM) is a promising
instance of such continuous space language models. An RNNLM
has a hidden layer with re-entrant connections to itself with one word
delay. Hence, the activations of the hidden units play a role of mem-
ory keeping a history from the beginning of the speech. Accordingly,
the RNNLM can robustly estimate word probability distributions by
taking long-distance interword dependencies into account. Mikolov,

et al. reported that RNNLMs yielded a large gain in recognition ac-
curacy when combining it with a standard n-gram model [2].

However, an RNNLM needs many more computations in the
decoding phase than standard n-gram models. First, as a common
problem when using continuous space language models, the compu-
tational cost to obtain a word probability is much more expensive
than the table look-up in the case of n-gram model. This is because
we need to compute activations of neurons and feed them to the
higher layers after computing the sigmoid or the softmax activation
function for each neuron. Second, especially with an RNNLM, the
search space in Viterbi decoding grows exponentially with the length
of the recognition hypotheses and makes computations prohibitively
expensive because every word probability distribution based on an
RNNLM is dependent on the entire history from the beginning of
the speech.

Therefore, speech recognition with RNNLMs is usually per-
formed by a two-pass search strategy based on N -best rescoring
[2, 6] or lattice rescoring [7]. But the two-pass strategy may not be
suitable for online applications, because its 2nd-pass search requires
a certain computation that delays the system responses. If we can
take a one-pass search strategy, the latency of the system is poten-
tially reduced dramatically. In addition, the recognition results can
be decided earlier without waiting for the end of each utterance by
using a technique in [8]. This option is advantageous in real-time
systems that display the recognition result as soon as possible on a
word-by-word basis [9].

One possible way to perform one-pass decoding is to approxi-
mate the RNNLM to a back-off n-gram model in advance, and con-
vert it to a weighted finite-state transducer (WFST) [10]. However,
since this approach quantizes different histories in the continuous
space by K-means clustering and entropy-based pruning, it sacri-
fices some recognition accuracy due to the quantization error. Fur-
thermore, since the conversion step requires a long time 1, it may be
difficult to use dynamic RNNLMs [4] based on unsupervised adap-
tation in on-line applications.

In this paper, we present another approach that enables one-pass
decoding with an RNNLM without approximation. The approach is
to represent the RNNLM as a prefix tree of possible word sequences
in WFST form, and generate only state transitions needed during
decoding, where the transition weight is directly computed with the
RNNLM. The transitions are used to rescore each partial hypothesis
using an on-the-fly composition technique that we previously pro-
posed [11, 12, 13]. With this method, the number of hypotheses in
Viterbi decoding is basically independent of the entire histories kept
for the RNNLM unlike the case of standard on-the-fly composition
[14, 15]. Accordingly, efficient one-pass decoding is possible with
small overhead for the RNNLM. Furthermore, since we do not have

1In [10], it took few minutes and a few hours depending on the vocabulary
size, the number of centroids, and the pruning threshold.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6414



w(t-1)

x(t)

s(t-1)

U

V

Z

y(t)

s(t)

b(t)

r(t)
delayed

Fig. 1. Class-based RNNLM

to convert the RNNLM to a static WFST beforehand, we can start
decoding immediately even if the RNNLM is dynamically updated.
To our knowldege, there is no other one-pass decoder that directly
uses an RNNLM without approximation.

This paper is organized as follows. Section 2 describes the basic
structure of an RNNLM. Section 3 presents a WFST representation
of an RNNLM and a method to generate its transitions on-the-fly
from it. Section 4 reviews the one-pass decoding strategy based on
the efficient on-the-fly composition technique we proposed before
and mentions the case generating state transitions from an RNNLM.
Section 5 shows our experimental results on a lecture transcription
task, and Section 6 concludes this paper.

2. RECURRENT NEURAL NETWORK LANGUAGE
MODELS

In this work, we adopted the class-based RNNLM architecture [3]
depicted in Fig. 1. The input vector for time index t is represented
as

x(t) = [w(t− 1)T , s(t− 1)T ]T , (1)

where w(t−1) denotes the last word in the 1-of-N coding and s(t−
1) denotes the previous hidden layer activation vector.

The current hidden layer activation vector s(t) can be computed
as

s(t) = f (U · x(t)) , (2)

where U is the weight matrix between the input and hidden layers
and f(·) denotes a sigmoid function that computes the sigmoid for
each element in a given vector.

Output vector y(t) consists of word and class probability vec-
tors:

y(t) = [b(t)T , r(t)T ]T , (3)

which can be obtained as

bk(t) = g (Vk · s(t)) (4)
r(t) = g (Z · s(t)) , (5)

where bk(t) is the sub-vector of word probability vector b(t), Vk

is the sub-matrix of weight matrix V to the word output layer, and
k denotes the class index. r(t) is the class probability vector, and
Z is the weight matrix to the class output layer. g(·) denotes a soft-
max function that computes the softmax over the elements in a given
vector.

Algorithm 1 RnnLMArcs(p,w)
1: if δ(p, w) is not defined then
2: q ← |Q|
3: Q← Q ∪ {q}
4: δ(p,w)← q
5: else
6: q ← δ(p, w)
7: end if
8: if s(p) is not computed then
9: p′ ← PARENTOF(p)

10: s(p)← f(U · [w(p′)T , s(p′)T ]T )
11: r(p)← g(Z · s(p))
12: end if
13: if bc(w)(p) is not computed then
14: bc(w)(p)← g(Vc(w) · s(p))
15: end if
16: Prnn(w|p)← bc(w)i(w)(p) rc(w)(p)
17: if w =</s> then
18: F ← F ∪ {q}
19: end if
20: return {(p, w,w,− logPrnn(w|p), q)}

Finally, the following is the word occurrence probability of wkℓ,
which is the ℓ-th word in class ck:

P (wkℓ|w(1), . . . ,w(t− 1))

≡ P (wkℓ|ck, s(t))P (ck|s(t)) = bkℓ(t)rk(t), (6)

where bkℓ(t) and rk(t) are elements of bk(t) and r(t), respectively.
With this class-based architecture, the computation for propagat-

ing activations from the hidden layer to the output layer can be re-
duced since we need to handle only the words in the class of the cur-
rent word to compute the softmax function rather than all the words
in the vocabulary.

3. WFST GENERATION FROM RNNLM

For using an RNNLM in one-pass decoding, we utilize its straight-
forward representation in WFST form, i.e., a prefix tree of possible
word sequences in the vocabulary. However, the size of the WFST
will grow exponentially with the length of the sequences. Suppose
the vocabulary size is 50,000 and the length of the sequences is 10.
The number of state transitions in the WFST will become 50, 00010.
Since it is not feasible to generate all such transitions, we generate
only part of them as necessary during decoding.

We present an algorithm for on-demand arc generation from an
RNNLM. To explain it, we first define the terminology related to
WFST [16], which is a finite state network that associates input
and output labels on each arc weighted with a minus log proba-
bility value. A WFST is defined over semiring K by an 8-tuple
(Σ,∆, Q, I, F,E, λ, ρ), where Σ is a finite set of input labels, ∆
is a finite set of output labels, Q is a finite set of states, I ⊆ Q
is a set of initial states, F ⊆ Q is a set of final states, E ⊆ Q ×
(Σ ∪ {ε})× (∆ ∪ {ε})×K×Q is a finite multi-set of transitions,
λ : I → K is an initial weight function, and ρ : F → K is a fi-
nal weight function. “ε” is a meta symbol that indicates there is no
symbol to input or output.

We assume here that an initial WFST only exists with initial state
0, i.e., Q = I = {0}. For any state p and word w, if a preceding
state of p is already made, a WFST transition that accepts w from
state p can be obtained with function RnnLMArcs(p, w).

6415



In lines 1-7, destination state q is prepared, where δ(p,w) is a
function that returns an individual state number depending on the p
and w pair. In lines 8-12, activations are computed for the hidden
layer and the class output layer for state p if they have not been
computed yet. Compared to the equations in Section 2, time index
t is replaced with state index p. PARENTOF(·) at line 9 returns the
source state of p, where p′ corresponds to t−1 in Section 2. In lines
13-15, the activations for the word output layer are computed over
the words in c(w), which is the class that w belongs to. On line 16,
word probability Prnn(w|p) is computed based on Eq. (6), where
i(w) indicates that w is the i(w)-th word in the class. In lines 17-19,
state q is set as a final state if w is a symbol representing a sentence
end. The resulting transition is returned at line 20.

If we use RNNLM-based probabilities in combination with stan-
dard n-gram probabilities, we can just insert the following statement
after line 16,

Pcomb(w|p) = λPrnn(w|p) + (1− λ)Pngram(w|ϕ(p)), (7)

and replace Prnn with Pcomb in line 20, where λ is a scaling factor
to balance the RNNLM and n-gram probabilities and ϕ(p) repre-
sents n − 1 word history of state p to calculate n-gram probability
Pngram(w|ϕ(p)).

4. SEARCH STRATEGY FOR ONE-PASS DECODING

Next we introduce an efficient on-the-fly composition technique,
called on-the-fly hypothesis rescoring [13], to employ an RNNLM
with small overhead in one-pass decoding. Given a transition e,
we denote its input label by i[e], its output label by o[e], its ori-
gin state by p[e], its destination state by n[e], and its weight by
w[e]. A hypothesis during the search h = e1, . . . , ek is a path
along consecutive transitions from the initial state: p[e1] = i,
n[ej−1] = p[ej ], j = 2, . . . , k. We extend n[·] and p[·] to paths
as n[h] = n[ek] and p[h] = p[e1]. We also extend o[·] and w[·] to
paths as o[h] = o[e1] · · · · · o[ek] and w[h] = w[e1] + · · ·+ w[ek].
We sometimes use a subscript indicating the corresponding WFST
for i[·], o[·], p[·], n[·] and w[·] for disambiguation.

Suppose transducers A and B can be composed. In our ap-
proach, the Viterbi search is performed for A but not for compos-
ite transducer A ◦ B as in standard approaches. Let h be a partial
hypothesis produced by A, which has accumulated weight wA[h].
In the search process, h is linked to a list of co-hypotheses that are
generated from B by taking symbol sequence oA[h] as B’s input.
The decoder rescores h using the minimally weighted co-hypothesis
in the list. The rescoring is performed efficiently by managing each
hypothesis h and co-hypothesis list g[h].

During decoding, the following basic procedure is used to gener-
ate each hypothesis and rescore it by using its related co-hypotheses.
When a new hypothesis h′ is generated by adding a transition e orig-
inating from nA[h], the weight of h′ can be calculated as wA[h

′] =
wA[h] + wA[e]. If the transition e outputs nothing (oA[e] = ε and
oA[h

′] = oA[h]), no new co-hypothesis is generated from B. In this
case, the co-hypothesis list is kept as it is, i.e. g[h′] = g[h]. Only
when the transition e outputs a non-epsilon symbol y (oA[e] = y ̸=
ε and oA[h

′] ̸= oA[h]), a new co-hypothesis f ′ is generated for each
existing co-hypothesis f in g[h] by adding a transition r, which orig-
inates from the state nB [f ] with an input symbol y. The weight of f ′

can be calculated as wB [f
′] = wB [f ] +wB [r]. New co-hypotheses

generated as above are then stored in g[h′]. We then use the fol-
lowing modified weight, instead of the pure weight wA[h

′], in the
Viterbi search on A:

α(h′) = wA[h
′] + min

f ′∈g[h′]
wB [f

′] (8)

Table 1. Performance of one-pass decoding methods
3g-1p 3g+Rnn-1p

Max cohyp. list size - 15 10 5 1
Word error rate [%] 26.8 24.5 24.5 24.5 24.5
Real-time factor 0.38 0.80 0.69 0.61 0.51

When the Viterbi search chooses the best hypothesis from different
hypotheses that meet at the same state in A, their co-hypothesis lists
are merged into one list.

For one-pass decoding with an RNNLM, we assume that WFST
A is a fully composed n-gram based transducer, namely, HCLG,
and WFST B is generated on-the-fly from the RNNLM using Al-
gorithm 1. With this method, the exponential growth of states by
RNNLM can be suppressed efficiently by limiting the size of co-
hypothesis list g[h]. However, to save memory usage, it is prefer-
able to erase all the states of the RNNLM WFST after recognizing
each utterance. In addition, since HCLG already contains n-gram
probabilities, they must be canceled from the RNNLM WFST, i.e.,
P ′
comb(w|p) = Pcomb(w|p)/Pngram(w|ϕ(p)) must be used in Al-

gorithm 1.

5. EXPERIMENTS

We evaluated our decoding approach with the MIT lecture transcrip-
tion task [17]. The training set consisted of 104 lectures of approx-
imately 116.2 hours. The development and test sets were two and
eight lectures of 2.0 and 7.8 hours, respectively.

We used tied-state triphone HMMs, a back-off trigram language
model, and a class-based RNNLM for speech recognition. The fea-
ture vectors had 39 elements consisting of 12 MFCCs plus energy,
and their delta and delta-delta components. The HMMs had 2,546
states and 32 Gaussians per state, which were made using lectures
and seminars in the corpus. To train the HMMs, we used the dif-
ferential maximum mutual information (dMMI) criterion [18, 19],
which is equivalent to the minimum phone error (MPE) criterion.

The trigram model was trained using the transcriptions of 1.1
M words in the corpus. The vocabulary size of the lexicon was
47,448. We used Kneser-Ney smoothing [20] for backing off the
trigram probabilities.

The class-based RNNLM had 250 word classes, where the
classes were decided by the method in [3]. The hidden layer had
300 units. Accordingly, the input layer consisted of 47,488 + 300
units, and the output layer consisted of 47,488 + 250 units. We
also inserted a compression layer of 60 units to reduce the com-
putation of the RNN-based probabilities [3]. We did not observe
any degradation of word accuracy by incorporating the compression
layer in our preliminary experiment. The RNNLM was trained with
the RNNLM toolkit [21], where the back-propagation through time
(BPTT) technique was used in consideration of the dependence over
multiple utterances. For handling this dependence in decoding, we
modified the decoder so that the hidden layer activation vector of
the best final state of RNNLM WFST was taken over to the initial
state for the next utterance, as used in an N -best rescoring technique
[5]. The test-set perplexities of the trigram model, the RNNLM, and
their linear combination were 199, 253 and 157, respectively.

First we examined the trigram-based one-pass decoding (3g-1p)
to obtain the baseline performance and then evaluated the proposed
method using a linearly combined trigram/RNNLM (3g+Rnn-1p)
while changing the maximum co-hypothesis list size. We used a
computer including Intel Xeon X5570 2.54 GHz processors with a
single thread to measure the decoder speed.

6416



23

23.5

24

24.5

25

25.5

26

26.5

27

0

0.1

0.2

0.3

0.4

0.5

0.6

W
o

rd
 e

rr
o

r 
ra

te
 [

%
] 

R
e

a
l 

ti
m

e
 f

a
ct

o
r 

1st pass Word lattice generation

Lattice pruning A* n-best search

RNN rescoring Word error rate

WER 

Fig. 2. WER and RTF of different decoding approaches with
RNNLM.

Table 1 shows the word error rate (WER) and the real-time fac-
tor (RTF) for each decoding condition, where the beam width was
chosen for both methods, at which the WER of 3g-1p was almost
saturated when we gradually increased the beam width.

We obtained a 26.8% WER and a 0.38 RTF for 3g-1p and a
24.5% WER and a 0.51 RTF for 3g+Rnn-1p with a max cohyp. list
size of 1. During the 3g+Rnn-1p decoding, each partial hypothesis
generated from the first WFST, i.e., HCLG, held multiple histo-
ries from the beginning of the speech. These histories were used
to rescore the hypothesis by the maximum score over the histories
when the hypothesis was extended by a new word. The max cohyp.
list size is used to restrict each list.

When we used 15 for the list size, the RTF was 0.8. This is
almost two times slower than the 3g-1p. However, the WER did not
increase at all, and the RTF decreased to 0.51 even if we reduced the
list size to 1. This implies that keeping at most one best history is
adequate for each hypothesis conditioned by the previous two words,
i.e., in trigram cases. In all the succeeding experiments, we set the
list size to 1.

Second, we compared our decoding approach with N -best
rescoring. Fig. 2 shows the RTF and WER for each method, where
the decoding time is divided into 1st-pass decoding, word lattice
generation [22], lattice pruning, A* N -best search, and RNNLM
rescoring, all of which are necessary steps for N -best rescoring.
Lattice pruning is performed based on the posterior probability of
each lattice arc. The pruning threshold was chosen so that the WER
did not increase.

We tested two types of N -best rescoring by the combined tri-
gram/RNNLM. One is the standard method by which the sentence
hypotheses in the N -best list are individually rescored, and the best
hypothesis is chosen based on the rescored scores. The other is a
more efficient method. An N -best list can be represented as a WFST
consisting of linear transition chains that share one initial state. We
combined the WFSTs of N -best list and RNNLM by a composition
operation and found the best hypothesis from the composed WFST
using a shortest-path algorithm. With this method, we removed the
duplication of the RNN computation for the common prefix of the
N -best list. This technique is expected to perform the rescoring step
with almost the same time as fast N -best rescoring techniques such
as an RNN probability cache [5] and a prefix tree based N -best list
[6]. We also performed lattice rescoring with the RNNLM WFST
by the composition and the shortest-path algorithm, where we used
a similar technique to set the max co-hypothesis list size to 1.

23

24

25

26

27

28

29

30

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

W
o

rd
 e

rr
o

r 
ra

te
 [

%
] 

Latency [sec] 

100R

100R-WFST

1000R

1000R-WFST

LatR-WFST

3g+Rnn-1p

Fig. 3. Latency and WER of different decoding approaches with
RNNLM

RTFs and WERs in 100-best and 1000-best rescoring (100R and
1000R), and those with WFST operations (100R-WFST and 1000R-
WFST), and lattice rescoring (LatR-WFST) are shown in Fig. 2 with
3g-1p and the proposed 3g+Rnn-1p. Although 3g+Rnn-1p needed a
comparable decoding time with 1000R, it achieved the lowest WER.
When we used a slightly narrower beam width (3g+Rnn-1p*), the
RTF became smaller than those of other rescoring methods and com-
parable to 3g-1p, where the WER slightly increased from 24.5% to
24.7% but it equaled that of 1000R, 1000R-WFST, and LatR-WFST.

Finally, we show the performance of the proposed method in on-
line processing, which we want to emphasize the most in this paper.
We measured the latency (wait time) from the end of each utterance
to the output of the recognition result. In this experiment, we sim-
ulated an on-line condition under which frame-by-frame processing
does not proceed beyond the utterance time. Fig. 3 shows the WER
and the latency of the one-pass and the two-pass approaches when
we changed the beam width. In the two-pass approaches, computa-
tions excluding the 1st pass cannot start before the end of each ut-
terance. Therefore, all additional computations for the 2nd-pass are
included in the latency. As shown in Fig. 3, our proposed method
reduced the latency by a factor of 10 compared to the other two-pass
methods at the same WER. In addition, we emphasize again that this
one-pass decoding not only reduces the latency but also decides the
recognition result earlier without waiting for the end of each utter-
ance, which is an important option for on-line applications.

6. CONCLUSION

In this paper, we proposed an efficient one-pass decoding method for
real-time speech recognition employing a recurrent neural network
language model (RNNLM). Our proposed method enabled one-pass
Viterbi decoding with an RNNLM without approximation, where
the RNNLM was represented as a prefix tree of possible word se-
quences, but only the part needed for decoding was generated on-
the-fly and used to rescore each hypothesis using the on-the-fly com-
position technique that we previously proposed.

From the experimental results on the MIT lecture transcription
task, we showed that the proposed method enabled one-pass decod-
ing with small overhead for the RNNLM and achieved a slightly
higher accuracy than 1000-best rescoring. The method also reduced
the latency in two-pass decoding by a factor of 10.

Future work will include evaluation of our decoding method
with a wide variety of tasks and extension to on-line adaptation of
RNNLM in real-time processing.

6417



7. REFERENCES

[1] H. Schwenk, “Continuous space language models,” Computer
Speech and Language, vol. 21, no. 3, pp. 492–518, 2007.

[2] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, , and S. Khu-
danpur, “Recurrent neural network based language model,” in
Proc. Interspeech, 2010, pp. 1045–1048.

[3] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khu-
danpur, “Extensions of recurrent neural network language
model,” in Proc. ICASSP, 2011, pp. 5528–5531.

[4] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Cer-
nocky, “Empirical evaluation and combination of advanced
language modeling techniques,” in Proc. Interspeech, 2011,
pp. 605–608.

[5] S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget, “Re-
current neural network based language modeling in meeting
recognition,” in Proc. Interspeech, 2011, pp. 2877–2880.

[6] Y. Si, Q. Zhang, T. Li, J. Pan, and Y. Yan, “Prefix tree based
N-best list re-scoring for recurrent neural network language
model used in speech recognition system,” in Proc. Inter-
speech, 2013, pp. 3419–3423.

[7] A. Deoras, T. Mikolov, and K. Church, “A fast re-scoring strat-
egy to capture long-distance dependencies,” in Proc. EMNLP,
2011, pp. 1116–1127.

[8] M. Saraclar, M. Riley, E. Bocchieri, and V. Goffin, “Towards
automatic closed captioning: low latency real time broadcast
news transcription,” in Proc. ICSLP, 2002, pp. 1741–1744.

[9] T. Hori, S. Araki, T. Yoshioka, M. Fujimoto, S. Watanabe,
T. Oba, A. Ogawa, K. Otsuka, D. Mikami, K. Kinoshita,
T. Nakatani, A. Nakamura, and J. Yamato, “Low-latency real-
time meeting recognition and understanding using distant mi-
crophones and omni-directional camera,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 20, no. 2, pp.
499–513, 2012.

[10] G. Lecorve and P. Motlicek, “Conversion of recurrent neural
network language models to weighted finite state transducers
for automatic speech recognition,” in Proc. Interspeech, 2012.

[11] T. Hori, C. Hori, and Y. Minami, “Fast on-the-fly com-
position for weighted finite-state transducers in 1.8 million-
word vocabulary continuous speech recognition,” in Proc.
Interspeech2004–ICSLP, 2004, vol. 1, pp. 289–292.

[12] T. Hori and A. Nakamura, “Generalized fast on-the-fly compo-
sition algorithm for WFST-based speech recognition,” in Proc.
Interspeech2005–Eurospeech, 2005, pp. 557–560.

[13] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Effi-
cient WFST-based one-pass decoding with on-the-fly hypothe-
sis rescoring in extremely large vocabulary continuous speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 15, no. 4, pp. 1352–1365, 2007.

[14] D. Caseiro and I. Trancoso, “Transducer composition for “on-
the-fly” lexicon and language model integration,” in Proc.
ASRU, 2001, pp. 393–396.

[15] C. Allauzen, M. Riley, and J. Schalkwyk, “A generalized com-
position algorithm for weighted finite-state transducers,” in
Proc. Interspeech, 2009, pp. 1203–1206.

[16] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” Computer Speech and Lan-
guage, vol. 16, pp. 69–88, 2002.

[17] J. Glass, T. J. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and
R. Barzilay, “Recent progress in the MIT spoken lecture pro-
cessing project,” in Proc. Interspeech, 2007, pp. 2553–2556.

[18] A. Nakamura, E. McDermott, S. Watanabe, and S. Katagiri,
“A unified view for discriminative objective functions based on
negative exponential of difference measure between strings,” in
Proc. ICASSP, 2009, pp. 1633–1636.

[19] E. McDermott, S. Watanabe, and A. Nakamura, “Discrimina-
tive training based on an integrated view of MPE and MMI in
margin and error space,” in Proc. ICASSP, 2010, pp. 4894–
4897.

[20] R. Kneser and H. Ney, “Improved backing-off for M-gram
language modeling,” in Proc. ICASSP’95, 1995, vol. 1, pp.
181–184.

[21] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cer-
nocky, “RNNLM - Recurrent neural network language model-
ing toolkit,” in Proc. ASRU demo, 2011, pp. 196–201.

[22] A. Ljolje, F. Pereira, and M. Riley, “Efficient general lattice
generation and rescoring,” in Proc. Eurospeech, 1999, pp.
1251–1254.

6418


