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ABSTRACT

Among many speaker adaptation embodiments, Speaker Adaptive
Training (SAT) has been successfully applied to a standard Hidden-
Markov-Model (HMM) speech recognizer, whose state is associated
with Gaussian Mixture Models (GMMs). On the other hand, recent
studies on Speaker-Independent (SI) recognizer development have
reported that a new type of HMM speech recognizer, which replaces
GMMs with Deep Neural Networks (DNNs), outperforms GMM-
HMM recognizers. Along these two lines, it is natural to conceive
of further improvement to a preset DNN-HMM recognizer by em-
ploying SAT. In this paper, we propose a novel training scheme that
applies SAT to a SI DNN-HMM recognizer. We then implement
the SAT scheme by allocating a Speaker-Dependent (SD) module
to one of the intermediate layers of a seven-layer DNN, and elabo-
rate its utility over TED Talks corpus data. Experiment results show
that our speaker-adapted SAT-based DNN-HMM recognizer reduces
the word error rate by 8.4% more than that of a baseline SI DNN-
HMM recognizer, and (regardless of the SD module allocation) out-
performs the conventional speaker adaptation scheme. The results
also show that the inner layers of DNN are more suitable for the SD
module than the outer layers.

Index Terms—
Speaker Adaptative Training, Deep Neural Network

1. INTRODUCTION

Speaker adaptation is one key concept for achieving high performing
speech recognition. A typical example is adapting a present speech
recognizer, such as a Speaker-Independent (SI) speech recognizer, to
a particular speaker to accurately recognize his/her speech data only
using a limited volume of his/her data. Among various approaches to
this important concept, Speaker Adaptive Training (SAT) has been
successfully applied to a standard Hidden-Markov-Model (HMM)
speech recognizer that adopts Gaussian Mixture Models (GMMs) for
estimating the emission probability at every state of the HMM struc-
ture [1]. SAT is a training scheme for producing a compact, easy-to-
adapt speaker model through the concurrent attempts of normalizing
speaker-dependent acoustic variability in speech signals and opti-
mizing such recognizer parameters as GMMs to achieve high recog-
nition accuracy. The recent embodiments of this scheme include ap-
plications to the Shallow-Neural-Network (SNN)-based speech rec-
ognizer [2].

A new type of HMM recognizer that uses a Deep Neural Net-
work (DNN) in place of GMMs has attracted great research interest

in SI speech recognizer development [3]. Probably because DNN
gains high discriminative power based on its discriminative training
paradigm and its high feature representation capability, DNN-HMM
recognizers generally achieve accurate recognition.

In light of the above two recent trends, we propose in this paper
a new training scheme for achieving increased recognition accuracy
by applying SAT to a SI DNN-HMM recognizer. The contrivance of
our proposed scheme is three-fold: it allocates a Speaker-Dependent
(SD) module to one of the intermediate layers of DNN; it optimizes
the entire network as well as the SD module in the SAT framework
that synchronizes the selection of the SD module and the speaker
data for training; it only adapts the SD module to a target speaker.
Some of the authors of this paper previously outlined our proposed
scheme [4]. However, its details have not yet been reported. We
define our scheme in detail and experimentally elaborate its effec-
tiveness in the difficult, TED Talks corpus data task.

2. PROPOSED METHOD

2.1. Overview

Several speaker adaptation techniques using a hybrid of Neural Net-
work (NN) and HMM were proposed outside the SAT framework
(e.g., [5, 6, 7, 8]). Some early cases among the techniques include
the conventional SNN that attempted speaker adaptation by simply
adding a linear projection network to either an input or an output
layer of SI network [5, 6]. Recent cases employed DNN and adapted
the SI network by incorporating regularization constraints [7, 8].

Unlike the above cases, our proposed scheme adopts the fol-
lowing three SAT-based steps: 1) DNN initialization, 2) DNN re-
training by assigning one intermediate layer to the SD module, and
3) adaptation of the SD module. Note here that the HMM part of
the DNN-HMM recognizer is assumed to be already trained by such
appropriate criterion as Maximum Likelihood and Maximum Mu-
tual Information. Similar to the preceding DNN-HMM recognizer
architecture, the DNN part of our recognizer has the same number
of output nodes as the HMM states of triphones, i.e., senones. Each
output node produces a probability estimate that is used for calcu-
lating the emission probability for its corresponding senones. In ad-
dition, DNN training is executed by minimizing the Cross-Entropy
(CE) loss for every input acoustic feature vector, which is converted
from an input speech signal. The definition of the input vectors will
be given below in 3.1.

Fig. 1 illustrates the structure of our DNN, the procedure of
conducting SAT with allocating SD modules, and the procedure of
adapting an SD module to a selected speaker. Our DNN is basically
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a standard Multi-Layer Perceptron (MLP) network whose node has
connection weights and bias. In the figure, we assume that our DNN
has seven layers (L0, . . . , L6), and for illustration simplicity, it has
just two nodes at every layer. The weights between layers Ll and
Ll−1 are represented in the matrix form such as Wl, but the details
of this definition will be given in subsequent subsections where we
describe each step of the training scheme in detail. In the figure,
again for illustration simplicity, no biases are depicted.

2.2. Initialization

Fig. 1 (a) illustrates the initial status of our DNN, which works as
part of the baseline SI DNN-HMM recognizer.

For effective network training, the DNN must be appropriately
initialized. A standard initialization is using the Restricted Boltz-
mann Machine (RBM). However, this non-discriminative training is
not necessarily suitable for recognition. Therefore, an alternative,
somewhat advanced initialization can be considered. An example
of such advanced initialization is to discriminatively train the RBM-
pre-trained DNN with Error Back Propagation (EBP) training [9]
using the minimum CE loss criterion.

In Fig. 1 (a), WSI
l represents the weight matrix of Ll (and Ll−1),

which is produced by the above CE loss minimization and works for
the SI DNN-HMM recognizer.

2.3. Re-training with speaker-dependent module allocation

In Fig. 1, we assume the allocation of SD modules, i.e., SD1, . . . , SDS ,
to the second layer (L2), where S is the number of speakers in the
training dataset and Ws

2 is the weight matrix of SDs.
First, as illustrated in Fig. 1 (b), we initially set S SD modules to

layer L2 by copying WSI
2 of the initial network. Note that the node

connection between an added SD module (at L2) and its adjacent
layers (L1 and L3) is dynamically controlled in conjunction with
the speaker-by-speaker selection of the training speech data. Fig. 1
(b) illustrates two example cases: one for using the speech data of
speaker 1 and one for speaker 2. When using the data of speaker 1,
only the nodes of SD1 are connected with the nodes of the adjacent
layers; the nodes of the other SD modules, SD2, . . . , SDS , are dis-
connected with the nodes in the adjacent layers. The green dashed
line depicts this situation, and training is executed only along this
path. Similarly, the purple solid line depicts the situation in the case
of using the data of speaker 2. Clearly, each SD module is trained
only using its corresponding speaker’s data, but the other part of the
network is trained using the data of all speakers.

We conducted the re-training using EBP training, as in the ini-
tialization stage. One additional device here is to incorporate regu-
larization into the EBP training. The size of each bit of speaker data
is usually limited, and this restriction easily causes over-fitting to the
training data, or in other words, a decrease in the robustness to the
unseen data for the SD modules. The regularization details will be
explained in 2.5.

Here, to circumvent the over-fitting problem, alternatives to reg-
ularization are possible, e.g., Cluster Adaptive Training (CAT) [10],
which increases the amount of speech data that can be used to train
the SD module by clustering all the available speakers into groups
of acoustically similar speakers.

As reported in previous studies on SAT, the above speaker-by-
speaker re-training is expected to increase the adaptability of the net-
work to some selected speaker’s data.

2.4. Speaker adaptation using speaker-dependent modules

In the final stage of the SAT scheme, we adapt a preset speaker mod-
ule, which is placed in the re-trained DNN, using the speech data

Fig. 1. Network configurations and training procedures of Speaker
Adaptive Training (SAT) for DNN. (a) Speaker-Independent (SI)
DNN, (b) Training procedure with Speaker-Dependent (SD) mod-
ule allocation, (c) Pre-Trained Speaker Adaptive Training (PT-SAT)
DNN.

of a particular target speaker. In the scenario of Fig. 1, the preset
speaker module is embedded into L2 and adapted.

Fig. 1 (c) illustrates the status in which a preset speaker module,
represented by Wmean

2 , is set to L2 of the re-trained DNN, where
WSAT

l represents the weight matrix generated through re-training.
Here, there are many possible ways of preparing the preset speaker
module. In the figure, we make the following assumption about the
module: 1) place the 2nd layer’s weight matrix of SI DNN as an ini-
tial state of the SD module, and 2) re-train the initial matrix using all
the training speech data using non-regularized EBP training with the
CE loss minimization criterion. The Term Wmean

2 represents the sit-
uation where all the training speech data is used for updating its cor-
responding parameters (weights), and we refer to the resulting net-
work (Fig. 1 (c)) as Pre-Trained SAT (PT-SAT) network. We adopt
non-regularized EBP training because all the training data, which are
usually large, can be used.

In the adaptation, we adapt Wmean
2 using the target speaker’s

speech data. Note that the other weights all are fixed. Similar to
the former re-training stage using all the training data, the update of
Wmean

2 is executed with the regularized EBP training, where the reg-
ularization is incorporated into the EBP training using the CE loss.
Since the data size for the adaptation is often limited, we need to take
the over-fitting problem into account. Also note that the adaptation
of only the SD modules probably helps circumvent the over-fitting
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problem because it reduces the number of parameters to train by not
re-training many weights of the other part of the network.

2.5. Regularization

As described in the previous subsection, since the amount of speech
data for one speaker is often limited, our re-training and adaptation
of the SD module uses regularized EBP training in place of standard
(non-regularized) training. There are several possible definitions of
the regularization term. Among them, we generally use the L2 norm
of the difference between the initial weight matrix (WSI

lSD
for produc-

ing the network of Fig. 1 (b), and Wmean
lSD

for producing a (speaker-
adapted) SAT network that is further modified from the network of
Fig. 1 (c)) and the weight matrix of the SD module.

Even if the training data are limited in the re-training and adap-
tation stages for the SD modules, the weights of the other network
layers can be trained using a sufficient amount of training data. The
data of all the speakers can be used for training the weights outside
the SD modules. Therefore, we only incorporate the regularization
term to the SD module.

The regularization term for training the SAT recognizer is de-
fined as follows [7]:

R(Λ) =
1

2
∥Wt

lSD −Wmean
lSD ∥22

+
1

2
∥bt

lSD − bmean
lSD ∥22 (t = 1, 2, ..., T ) (1)

where Wt
lSD

and bt
lSD

are the weight matrix of the t-th SD module
and its corresponding bias vector in the lSD layer, respectively; T
is the number of speakers for adaptation; Wmean

lSD
and bmean

lSD
are an

initial setting of the weight matrix and the bias vector at the time
position right before the adaptation, which corresponds to Fig. 1 (c),
respectively; Λ represents all the trainable network parameters such
as the weights and biases.

For producing the network of Fig. 1 (b), Wmean
lSD

and bmean
lSD

in
(1) are replaced with WSI

lSD
and bSI

lSD
, both of which are the weight

matrix of SI DNN and its corresponding bias vector in the lSD layer,
respectively. Also, the speaker set consisting of T speakers used in
(1) is replaced by the training data set consisting of S speakers.

3. EXPERIMENTS

3.1. Conditions
3.1.1. Data

We tested our proposed method on the difficult, lecture speech data
of the TED Talks corpus, under the supervised adaptation setups. We
prepared three data sets: training, evaluation, and testing.

The training data set consisted of the speech data of 300 speak-
ers; each speaker’s data was about 30 minutes. The total length of
the training data was about 150 hours. The evaluation data set con-
sisted of the speech data of eight speakers, each of whom was dif-
ferent from the speakers in the training data. This set was used for
finding the optimal values of the hyper-parameters, which produced
high recognition accuracies over the set itself, such as the learning
rate of CE minimization and the regularization coefficient.

The testing data set consisted of the speech data of 28 speakers,
which was used for the IWSLT2013 testing data set, each of whom
was different from the speakers both in the training and evaluation
data sets.
3.1.2. Adopted recognizers

To evaluate our proposed SAT-based DNN-HMM recognizer, we
compared its performance with those produced by a baseline SI

DNN-HMM recognizer, a Speaker-Adapted (SA) DNN-HMM rec-
ognizer, and a SAT-based DNN-HMM recognizer.

Here, the baseline recognizer simply adopted the seven-layer
DNN as its front-end, and the whole network was first initialized
by RBM training and trained using CE minimization optimization
over the training data (see Fig. 1 (a)).

The SA recognizer was implemented by adapting one of the
SI recognizer’s intermediate network layers, which corresponds to
a speaker-dependent (SD) module, using the speech data of an adap-
tation target speaker that was selected from the 28 testing speak-
ers. To circumvent the problem of closed-form training, we di-
vided the speech data of every testing speaker into four subgroups
and obtained recognition results in the four-times cross-validation
(CV) scheme. In this CV scheme, we used one of the subgroups for
testing and the three remaining subgroups for training and obtained
the average recognition accuracies by changing a subgroup for four
trainings.

The SAT procedure first adopted the baseline SI recognizer as
the initial status of the SAT-based recognizer and next prepared SD
modules, whose numbers were the same as those of the training
speakers, i.e., 300; the procedure next generated a PT-SAT network
along the course of Fig. 1 (b) to Fig. 1 (c). Finally, in the adaptation
stage, the SAT procedure generated the SAT recognizer by training
only the SD module in the speaker-by-speaker mode, where an adap-
tation target speaker was selected from the 28 testing speakers.

When adapting the SI recognizer to the SA recognizer, we must
take the over-fitting problem into account, because the SD module
set in layer lSD is adapted using a limited volume of the data of a
selected speaker. Therefore, in this adaptation, we applied the regu-
larization term of (1) to the update of the weights and biases of layer
lSD , changing Wmean

lSD
and bmean

lSD
to WSI

lSD
and bSI

lSD
, respectively.

In all of our recognizers, the HMM part used the 4-gram
language model that was trained over the transcriptions of TED
Talks, News Commentary, and English Gigaword [11] and used the
context-dependent acoustic model that was trained with the Boosted
MMI training. During the DNN training, all of the HMM parame-
ters were fixed, such as the language model and the state transition
probabilities.

The DNN module in our recognizers used 429 input nodes, 4909
output nodes, and 512 nodes for all of the intermediate layers.

As above, we selected one from the five intermediate layers as
an SD module in the adaptation stage of either the SA or SAT rec-
ognizer and elaborated the layer selection effect in the speaker adap-
tation by changing a selected layer from the 1st intermediate layer
through the 5th intermediate layer. This is motivated by our re-
search interest in attempts to reveal the roles of intermediate layers
for (speaker) feature representation.

3.1.3. Acoustic feature representation

The input speech was first converted to a series of acoustic feature
vectors, each of which was calculated through a 20-ms Hamming
window that was shifted at 10-ms intervals. The acoustic feature
vector consisted of 12 MFCCs, logarithmic power (log-power), 12 ∆
MFCCs, ∆ log-power, 12 ∆∆ MFCCs, and ∆∆ log-power, where
MFCC stands for Mel-scale Frequency Cepstrum Coefficient, ∆ is
the first derivative, and ∆∆ is the second derivative. The dimen-
sions of the acoustic feature vectors were 39. Then the 11 concate-
nated acoustic feature vectors (429 dimensions) were used as input
for the DNN’s front-end. From the viewpoint of the Hamming win-
dow positioning, these 11 vectors were considered a concatenation
of the acoustic feature vectors at the Hamming window position, five
acoustic feature vectors at its preceding positions, and five acous-
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Table 1. Experimental result (word error rate [%]). The upper row
shows the names of the tested recognizers, i.e., the SI recognizer
(baseline), the SA recognizer (adapted from SI), the PT-SAT rec-
ognizer (before adaptation), and the SAT recognizer (adapted from
PT-SAT). The left-end column shows the number of a network layer,
to which the SD module placed.

tic feature vectors at its succeeding positions. Each element of the
429-dimensional input vector was normalized so that its mean and
variance became 0 and 1, respectively.

3.1.4. Hyper-parameter settings

DNN training sometimes requires careful control of the learning rate.
Therefore we controlled it at each training epoch using the following
rule based on recognition accuracies over the evaluation data. If the
recognition error decreased over the evaluation data, the learning rate
was kept the same as in the previous epoch. Otherwise, the learning
rate was halved, and the network parameters, i.e., the weights, were
replaced with those that produced the minimum recognition error
rate in the preceding training epochs, and the training for these re-
placed weights was restarted using the halved learning rate.

The training of the SI and PT-SAT recognizers was started by
setting the initial value of the learning rate to 0.004 and repeated 20
times, corresponding to 20 epochs, using the above learning rate up-
dating rule. Similarly, when producing the network of Fig. 1 (b),
the initial value of the learning rate was set to 0.004, the number of
training epochs was 20, and additionally the regularization coeffi-
cient was set to 0.1.

In contrast, in the adaptation stage where only the SD module
was updated, the learning rate was simply set to a fixed value that
was selected based on the recognition accuracies over the evaluation
data. We selected a learning rate of 0.005 for the adaptation of the
SA recognizer and 0.001 for the adaptation of the SAT recognizer.
Both of these adaptation procedures were repeated ten times, cor-
responding to ten epochs, with a regularization coefficient of 0.1,
which was selected again using the recognition rates over the evalu-
ation data.

3.2. Results

Table 1 shows the recognition performance in word error rate of the
four tested recognizers, i.e., the SI recognizer produced with the non-
regularized EBP training over all the training data, the SA recognizer
produced by adapting only the SD module of the SI recognizer to a
selected speaker, the PT-SAT recognizer produced with the SD mod-
ule allocation and the re-training using the data of all of the speakers
for training, and the SAT recognizer produced by adapting only the
SD modules of the PT-SAT recognizer to a selected speaker. Each
error rate for the SA and SAT recognizers is the average value ob-
tained by the previously described CV scheme. In the table, lSD is
the number of layers to which the SD module was allocated. Because
the baseline SI recognizer did not have an SD module, the same error
rate value, 26.4%, was shown in all the corresponding columns.

The SAT DNN-HMM recognizer achieved the lowest error rate,
18.0%, which is an 8.4% reduction from that of the baseline SI
DNN-HMM recognizer. The SA recognizer results show that even
the speaker adaptation that re-trained the selected SD module em-
bedded into the SI DNN produced an assured improvement in error
reduction. Its error reductions from that of the baseline SI recog-
nizer ranged from 6.4% to 7.7%. However, comparing the SI and
SAT recognizers clearly demonstrates the effectiveness of the SAT
training concept. Regardless of the layer to which the SD module
was allocated, the SAT DNN-HMM recognizer outperformed the
SA DNN-HMM recognizer. The results of the PT-SAT recognizer
were not promising. However, this recognizer was just produced as
an initial setting for successive adaptation, and therefore these high
error rates should not be a problem.

Table 1 might suggest that the differences between the SA and
SAT recognizers were not so large. However, from detailed analy-
ses, we found that our SAT recognizer surely outperformed the SA
recognizer: The SAT recognizer won at least in 75% of the 28 speak-
ers for each placement of the SD module; 93%, which was the best
rate, of the 28 speakers for the case of the SD module set in the first
layer.

The table also shows a quite interesting finding. The adapta-
tion that allocated the SD module to the inner layers such as the
3rd layer outperforms the case of allocating the SD module to the
layers near the input or output of the network, such as the 1st and
5th layers. This phenomenon appeared commonly in both the SA
DNN-HMM and SAT DNN-HMM recognizers. This suggests that
DNN abstracts the input information or extracts some features from
the input as data feed-forwarding progresses from the input layer to
the upper layers, and when effectively controlling the use of the SD
module and the speech data for adaptation, speaker-dependent fea-
tures are concentrated in the inner layers of the network. Taking this
point into account, we believe that using DNN is more suitable for
speaker adaptation (probably also for other types such as speaking
environment and transmission channel adaptations) than the conven-
tional SNN or any simple front-end architecture that has no deep
layer structure.

4. CONCLUSION

We proposed a new speaker adaptation training scheme that applies
the Speaker Adaptive Training (SAT) concept to the training of a
Deep Neural Network (DNN) front-end that is incorporated into the
DNN-HMM recognizer. In this scheme, the HMM part of the recog-
nizer is pre-trained independently of the DNN training, a Speaker-
Dependent (SD) module is embedded into a selected layer of the
DNN, and only the SD module is adapted in the adaptation stage.
We evaluated our proposed scheme with the TED Talks corpus data
task and clearly demonstrated its high utility. In addition, we suc-
cessfully revealed that the SD module allocated into the inner layers
worked better than that allocated into the outer layers such as the
input and output layers, suggesting that DNN has a function that
extracts abstract information or useful features from the input at its
inner layers.

We have not yet fully explored the optimal settings for the hyper-
parameters of DNN, such as the depth of the network (the number
of network layers) and the number of nodes at each layer. This
point must be further investigated. In addition, we will elaborate the
definition of the regularization term and investigate the effect of in-
corporating the Cluster Adaptive Training (CAT) approach into our
training scheme. The evaluation of the proposed method under the
unsupervised conditions will be also an interesting research topic.
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