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ABSTRACT

State of the art speaker recognition systems are based on the i-
vector representation of speech segments. In this paper we show how
this representation can be used to perform blind speaker adaptation
of hybrid DNN-HMM speech recognition system and we report ex-
cellent results on a French language audio transcription task. The
implemenation is very simple. An audio file is first diarized and
each speaker cluster is represented by an i-vector. Acoustic feature
vectors are augmented by the corresponding i-vectors before being
presented to the DNN. (The same i-vector is used for all acoustic fea-
ture vectors aligned with a given speaker.) This supplementary in-
formation improves the DNN’s ability to discriminate between pho-
netic events in a speaker independent way without having to make
any modification to the DNN training algorithms. We report results
on the ETAPE 2011 transcription task, and show that i-vector based
speaker adaptation is effective irrespective of whether cross-entropy
or sequence training is used. For cross-entropy training, we obtained
a word error rate (WER) reduction from 22.16% to 20.67% whereas
for sequence training the WER reduces from 19.93% to 18.40%.

Index Terms— Deep Neural Networks, HMM, i-vectors,
speaker adaptation, speech recognition.

1. INTRODUCTION

Speaker adaptation in speech recognition tries to reduce mismatch
between the training and the test speakers. Reducing this mismatch
results in significant improvement in recognition accuracy for the
test speakers. This problem has mostly been studied in the GMM-
HMM (Hidden Markov Models using Gaussian mixtures) speech
recognition scenario. Perhaps the most popular method is to adapt
the acoustic features to the acoustic phonetic models through a fea-
ture transform ( fMLLR or CMLLR [1]). Another way is to adapt
the acoustic phonetic models to the test speaker using a MLLR trans-
form [1], or through MAP adaptation [2]. In vocal tract length nor-
malization (VTLN) mapping [3], a frequency warping function or
transform normalizes speech features for different speakers.

Recently, the hidden Markov models with deep neural nets
(DNN-HMM) have been shown to outperform hidden Markov mod-
els with Gaussian mixtures (GMM-HMM) [4] [5]. This raises the
question of how to do speaker adaptation for DNN-HMM systems.
One approach currently being used is to compute a feature transform
(fMLLR) using a GMM-HMM system and then to use the trans-
formed features as input to the DNN-HMM system for both training
and recognition [6]. This requires building a GMM-HMM system
to compute the fMLLR transform for each speaker before the DNN-
HMM system decoding step.

There have been a few attempts to modify the DNN architecture
to do speaker adaptation. For example, Yao et al [7] adapt the affine
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transform of the top hidden layer or the softmax layer weights in the
DNN to the speaker. They also use a feature-space discriminative
linear regression (fDLR) method with the affine transformation of
the input layer to adapt to the new speaker. This adaptation of the
test speaker is done in a supervised mode: 200 utterances from the
test speaker are used to estimate the weights and transformations.
The resulting weights and transformations are then used to recognize
other utterances from the same speaker.

Similarly, for DNN-HMM adaptation, Abdel-Hamid and Jiang
[8] replace the input layer of the DNN by a small neural net to learn a
speaker code and a feature transform. Results are reported on TIMIT
phoneme recognition. During training, the speaker code for each
speaker is unique, while the adaptation neural net is the same for all
the speakers and its weights are trained jointly. The speaker code
for each test speaker is learned from a small set of labelled adapta-
tion utterances. The resulting speaker code is then used to recognize
other utterances from the same speaker.

In this paper we show how an i-vector characterizing a speaker
[9] can be used as an additional input to the feature layer of the
DNN in order to adapt the DNN to the speaker. This is possible
since i-vectors are a fixed dimensional representation of speech seg-
ments (the dimensionality is independent of the segment duration)
[10]. During training and recognition, one i-vector per speaker is
computed as an additional input to the DNN. All the frames corre-
sponding to this speaker have the same i-vector appended to them.
Speaker adaptation during decoding is completely unsupervised but
a diarization step is needed in order to extract an i-vector for each
speaker in the audio file. The computational overhead incurred in
extracting the i-vectors is minimal.

This speaker adaptation scenario results in significant reduc-
tion in word error rate (WER) for ETAPE 2011 French broadcast
audio transcription task. With cross entropy training, a WER of
22.16% without i-vector adaptation goes down to 20.67% with i-
vector adaptation. After sequence training, the WER of 19.93%
(without i-vector adaptation) goes down to 18.40% after i-vector
adaptation. Sequence training alone without i-vector adaptation re-
duces the WER by 1.35%, while sequence training with i-vector
adaptation reduces this WER by another 1.53%. The absolute reduc-
tion in WER due to i-vectors (1.53%) is higher than WER reduction
due to sequence training without i-vector adaptation (1.35%).

2. ACOUSTIC TRAINING AND TEST DATA

The ETAPE training data consisted of training data for ESTER 2
evaluation' and the more recently transcribed audio for ETAPE eval-

I'The data set resulting from the ESTER 2 evaluation campaign comprises
about 250 hours of radio broadcast transcribed by human listeners, as well
as the newspaper corpus Le Monde from 1987 to 2003. These datasets are
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uation [11] for a total of 300 hours of audio. We also had 178 hours
of internally transcribed audio from French TV broadcasts in Que-
bec. Overall, we had 478 hours of transcribed audio for training. In
all the training audio, speaker segments were manually labeled in
order to facilitate speaker-adapted training.

The ETAPE development set consisted of 15 files of 10 minutes
to 1 hour in duration for a total duration of 8.6 hours. They were
recorded from French radio and TV programs. The programs con-
tained both broadcast news and talk shows.

3. BASELINE DNN-HMM SYSTEM

A detailed description of how we optimized the DNN-HMM system
for recognizing French broadcast audio is given in [12]. We will just
outline the entire training in brief here. We used the Kaldi toolkit for
these experiments [13]. For training the deep neural network (DNN)
using back propagation, we divided the 478 hours of training au-
dio into 475 hours for training and 3 hours for validation. We got
only small improvements with DNNs having more than 7 layers. So
we carried out all the experiments with a 7 layer DNN. For input
features, we experimented with filter-bank and MFCC features. We
tried both the TRAP (TempoRAI Pattern) features [14] and the fea-
tures with delta and delta-delta added to them as input to the neural
net. The TRAP features extracted from filter-bank or MFCC features
gave lower WER than the filter-bank or the MFCC features enhanced
with delta and delta-delta coefficients.

To compute the TRAP features, we first normalize the 23-
dimensional filterbank features to zero mean per speaker. Then
31 frames of these 23-dimensional filterbank features (15 frames
on each side of current frame) are spliced together to form a 713-
dimensional feature vector. This 713-dimensional feature vector is
transformed using a hamming window (to emphasize the center),
passed through a discrete cosine transform and the dimensionality
is reduced to 368. This 368-dimensional feature vector is globally
normalized to have zero mean and unit variance. This normalized
368-dimensional feature vector is then input to the 7-layer DNN.
The feature vector is advanced by one frame every time. The 5 hid-
den layers have 2048 neurons each, and the output layer has 4148
outputs corresponding to the 4148 states in the HMM. The 7-layer
DNN has a total of 26 million weights. The alignments and output
labels for training the DNN come from the GMM-HMMs with 4148
states and 400k Gaussian means (trained with MLE only).

Several sources were used in the development of the language
model [15]. They included broadcast news transcriptions from
EPAC and ESTER campaigns, training transcripts from ETAPE,
350,000 sentences selected from French Gigaword database and
Google 4-grams. The resulting trigram search LM has 1.8M tri-
grams and the quadgram LM for rescoring lattices has 20M quad-
grams. The final model perplexity of the trigram search LM on the
Etape development text is 113.

The initial vocabulary was selected by taking words with the
highest frequency count weighted inversely with source size until a
vocabulary size of 100 000 words was obtained. To this we added
30,000 words from the training set. As a last step, we added proper
names found to occur at least twice in ETAPE, EPAC and ESTER
sources, as well as French departments, Paris metro stations, and
French acronyms taken from the Web. The final vocabulary was
approximately 140,000 words.

We trained the 7-layer DNN using back propagation with cross-
entropy as the objective function (CE) from 475 hours of audio. This

distributed by ELDA and by the DGA.

was followed by two iterations of alignment of training data with the
resulting DNN-HMM and retraining of the DNN using the aligned
data (CE 2 iter) as suggested by Su et al [16]. The resulting DNN was
then used for sequence training. Sequence training used the MMI
criterion (no boosting or MPE or sMBR criteria) [6]. The word error
rate on the ETAPE Dev set for the various steps is shown in Table 1.

Table 1. WER for the ETAPE Dev set using cross-entropy training
(CE), followed by 2 iterations of alignment and cross-entropy train-
ing (CE 2 iter), followed by sequence training (Sequence).

[ CE [ CE2iter [ Sequence |

| 22.16% [ 21.28% [ 19.93% ‘

4. I-VECTOR EXTRACTION

When we are given a diarized audio file and we wish to transcribe
it with a DNN-HMM speech recognition system, we represent each
speaker in the audio file by an i-vector and use these i-vector fea-
tures to perform blind speaker adaptation of the speech recognition
system.

I-vectors arose as a byproduct of eigenvoice modeling [17, 10].
Suppose we are given recordings each consisting of the speech of
a single speaker. Each recording is assumed to be represented by a
Gaussian mixture model (GMM) and a principal components analy-
sis is applied to the GMM supervectors. Thus the basic assumption
is that all utterance supervectors are confined to a low dimensional
subspace of the GMM supervector space so that each utterance su-
pervector is specified by a small number of coordinates. For a given
recording, these coordinates of the corresponding supervector define
the i-vector representation.

In probabilistic eigenvoice modeling, i-vectors are assumed to
have a standard normal prior and point estimates of i-vectors are
obtained by a posterior probability calculation [17, 10]. Using ¢ to
denote i-vectors and s to denote utterance supervectors, probability
model for supervectors is

s=m+Ti, 1~N(0,I)

where m is the supervector defined by a universal background model
(UBM) and the columns of the matrix 7" are the eigenvoices. For
each mixture component ¢, denote the UBM mean vector and co-
variance matrix by m. and 3. and, for a given utterance, denote
the corresponding zero and first order Baum-Welch statistics by N,
and F'.. Then the posterior covariance matrix C' and the posterior
expectation ¢ are given by

C

-1
(1 +> NCT:EJTC>

c

C> T:x.'(F.— Nem.). 1)

We trained the i-vector extractor (that is, the matrix 7T") and
the underlying UBM using the same 473 hours of broadcast audio
used for training the DNN. This training audio contains 99018 utter-
ances from 6597 speakers. The UBM configuration has 512 diagonal
Gaussians and 60 dimensional acoustic feature vectors (Gaussian-
ized MFCCs and their first and second derivatives).
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We extracted i-vectors of dimension 100, 200 and 400 in order
to test speaker adaptation with these three different i-vector dimen-
sions. The main computing in generating the i-vectors is in extract-
ing the first order Baum-Welch statistics. The total computing in ex-
tracting the i-vectors is around 1% of real time. This is much smaller
than 20% of real-time for extracting fMLLR transforms per speaker
using a small HMM-GMM model [12].

For the training speakers, the audio segments correspond to the
speaker labels in the manually transcribed transcription files. For
the ETAPE Dev set used for testing, each show was automatically
diarized using a multistage segmentation and clustering system [18].
This diarization system segmented the 8.6 hours of the ETAPE Dev
set into 2099 audio segments and 271 speaker clusters. Each of the
15 audio files in the Dev set was diarized separately. There was
no cross-file diarization. The overall diarization error rate for this
system was approximately 14%. For each speaker cluster in the Dev
set, we estimated one i-vector.

5. DNN-HMM SYSTEM WITH SPEAKER ADAPTATION

For the speaker-adapted deep neural network, the input TRAP fea-
tures are computed as in the baseline system. However, these TRAP
features are now augmented with a 100-dimensional i-vector com-
puted from all the audio segments of the speaker as shown in Fig. 1.
The only difference between this DNN and the baseline DNN is
the addition of 100 more input features corresponding to the 100-
dimensional i-vector. Instead of 368 TRAP features, the DNN input
layer has 368 TRAP features and 100 dimensional i-vector as in-
put. During training, the 100 dimensional i-vector for a speaker is
computed from all the audio segments in an audio file (or show) la-
beled with that speaker Id. Note that each training audio segment is
marked with a speaker Id. No cross show marking is done.

During decoding, the audio from a show is automatically di-
arized into speaker clusters using a multistage segmentation and
clustering system [18]. We compute one 100-dimensional i-vector
for each speaker cluster. This 100-dimensional i-vector together with
368 TRAP features are input to the DNN. So for the features input
to the DNN for one speaker, the 368 TRAP features vary from frame
to frame. However, the 100-dimensional i-vector for this speaker is
fixed and does not vary from frame-to-frame. This speaker-specific
i-vector provides the speaker characteristics to the DNN, and allows
the DNN to adapt itself to these speaker characteristics.

The training of the DNN augmented with the i-vector is per-
formed in the same fashion as that for the baseline system. We train
this DNN using back propagation with cross-entropy (CE) objective
function and stochastic gradient descent (SGD) as outlined in [6].
Basically, we start with a learning rate of 0.008. We start halving
this learning rate when the frame accuracy of a 3-hour validation
set improves by less than 0.5% between successive iterations. The
DNN training terminates when the frame accuracy of this validation
set increases by less than 0.1% between successive iterations.

5.1. Results with speaker adaptation

We trained a 7-layer DNN augmented with the i-vector on 475 hours
of French broadcast audio. We trained two separate DNN’s, one with
100 dimensional unnormalized i-vectors, and the other one with 100-
dimensional length normalized i-vectors. The i-vector was length
normalized by dividing the i-vector by the square root of the sum
of the squares of its elements. Note that the unnormalized i-vectors
are approximately Gaussianized by length normalization [19]. We
found that the length normalized i-vectors gave lower WER than the
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Fig. 1. Architecture of 7-layer DNN used for speaker adaptation.

unnormalized i-vectors as shown in Table 2. The speaker adaptation
through length normalized i-vectors reduced the WER by 1.26% ab-
solute.

Table 2. Comparison of WER for the ETAPE Dev set using cross-
entropy training (CE) for baseline DNN (without i-vector), for DNN
augmented with unnormalized i-vector, and with length normalized
i-vector.

[ baseline [ unnormalized i-vector | normalized i-vector |
[ 22.16% | 21.62% [ 20.90% |

To see if the i-vector adaptation is effective for both ETAPE Dev
set speakers that are in the training set and for ETAPE Dev set speak-
ers not in the training set, we compiled separate WER stats for the
Dev set for speakers that are in the training set versus speakers that
are not in the training set. A total of 1447 segments in the Dev set
correspond to speakers in the training set, and 3103 segments that
belong to speakers not in the training set. The breakdown of WER
before and after i-vector speaker adaptation is shown in Table 3. As
we can see from the table, the reduction in WER due to i-vector
adaptation is similar for the two groups. In other words, the deep
neural net can effectively adapt for both seen and unseen speakers
with the help of i-vectors.

In order to optimize the length-normalized i-vector dimension,
we trained DNN with speaker adaptation using i-vector dimensions
of 100, 200 and 400. The i-vector dimension of 400 gave the lowest
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Table 3. WER for the ETAPE Dev set speakers broken down into
speakers that occur in the training set versus speakers not in the
training set for baseline DNN (without i-vector) and for DNN aug-
mented with length normalized i-vector.

| speakers [ baseline [ normalized i-vector ‘
in training 19.76% 18.68%
not in training | 23.25% 21.91%

WER as shown in Table 4. The WER of 22.16% without adaptation
goes down to 20.67% with i-vector adaptation, a reduction of 1.49%
in WER. Note that with 400-dimensional i-vector, the DNN input
has more features corresponding to the speaker than to the utterance
(400 vs 368).

Table 4. Comparison of WER for the ETAPE Dev set using cross-
entropy training (CE) for baseline DNN (without i-vector), for DNN
augmented with length normalized i-vector of dimensions 100, 200,

and 400.

| i-vector dimension [ WER ‘

no ivec 22.16%
100 20.90%
200 20.76%
400 20.67%

In the baseline system, we trained the 7-layer DNN with cross-
entropy (CE), followed by two more iterations of training alignment
and CE training using the resulting DNN as suggested in [16]. This
was followed by sequence training of the resulting DNN with MMI
criteria. We tried the same scenario for training the DNN with
speaker adaptation using length normalized i-vector of dimension
100. Table 5 compares the results of the baseline system with the
DNN using i-vector speaker adaptation. Note that the absolute re-
duction in WER due to sequence training without i-vectors is 1.35%,
while the reduction in WER after i-vectors is 1.53% in addition to
that obtained by sequence training without i-vectors (19.93% WER
without i-vectors versus 18.40% WER with i-vectors).

Table 5. Comparison of WER for the ETAPE Dev set using base-
line DNN vesus DNN with length normalized i-vector. The DNN is
trained with cross-entropy (CE), 2 iterations of alignment and CE
training (CE 2 iter), followed by sequence training (sequence).

| DNN | CE [ CE2iter | sequence |
no ivec 22.16% | 21.28% 19.93%
100-dim ivec | 20.90% | 20.50% 18.40%

In order to see if MFCC'’s that have been transformed using an
fMLLR transform per speaker provide better speaker adaptation, we
trained a small GMM-HMM system as outlined in [12] and used
it to generate one fMLLR feature transform for each training and
test speaker. The features for both the training and test speakers
were then transformed using these fMLLR transforms. The result-
ing transformed features are input to the neural net as in [6]. Ba-
sically, MFCCs (C0-C12) are first normalized to have zero mean
per speaker. Nine frames (4 on each side of current frame) are
spliced together and projected down to 40 dimensions using an LDA
transform. These are then transformed using a semi-tied covariance

(STC) transform to reduce the correlations between the features. The
resulting features are then transformed using an fMLLR transform
per speaker. The 40-dimensional LDA+STC+fMLLR features are
then spliced together (4 frames on each side of current frame) and
reduced to 300 dimensions by another LDA transform. These 300-
dimensional features are then globally normalized to zero mean and
unit variance before input to neural net. We trained a 7 layer neural
net (5 hidden layers with 2048 neurons each and an output layer with
4148 outputs) with these features using CE training. The WER for
the Dev set with this neural net is 22.6% compared to 20.9% with
length-normalized i-vectors. Obviously, it is not necessary that we
use either i-vectors or fMLLR transformed features. Maybe using
the two jointly may lead to a better speaker adaptation scenario.

6. CONCLUSIONS

We have shown that deep neural networks (DNN) can adapt to
speaker characteristics if we augment standard acoustic features by
appending i-vectors to them. This method is simple to implement
and the computational overhead is minimal. It was motivated by the
success of i-vectors in speaker recognition where the i-vector repre-
sentation has been found to be very useful because it can serve to
characterize speakers by vectors of low, fixed dimension. If other
representations having this property prove to be equally effective in
speaker recognition, then they can probably be used to perform blind
speaker adaptation of DNN-HMM systems in the same way as we
have described here.

We observed that i-vector based speaker adaptation produced
substantial reductions in word error rates on our French language
broadcast audio testbed with both cross entropy and sequence train-
ing. With cross entropy training, the 22.16% WER without i-vector
adaptation goes down to 20.67% with i-vector adaptation. After se-
quence training, the WER of 19.93% without i-vector adaptation
goes down to 18.40% after i-vector adaptation. Sequence training
alone without i-vector adaptation reduces the WER by 1.35%, while
i-vector adaptation reduces this WER by another 1.53%. The abso-
lute reduction in WER due to i-vectors (1.53%) is higher than WER
reduction due to sequence training (1.35%). We also saw that i-
vector based speaker adaptation was effective with previously un-
seen speakers as well as with speakers encountered in the course of
training.

Finally we remark that relatively high dimensional i-vectors (e.g.
400 dimensions) gave the lowest word error rates. Thus it appears
that there is no danger of overfitting in DNN training.
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