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ABSTRACT

A method for speaker normalization in deep neural network (DNN)
based discriminative feature estimation for automatic speech recog-
nition (ASR) is presented. This method is applied in the context
of a DNN configured for auto-encoder based low dimensional bot-
tleneck (AE-BN) feature extraction where the derived features are
used as input to a continuous Gaussian density hidden Markov
model (HMM/GMM) based ASR decoder. While AE-BN features
are known to provide significant reduction in ASR word error rate
(WER) with respect to more conventional spectral magnitude based
features, there is no general agreement on how these networks
can reduce the impact of speaker variability by incorporating prior
knowledge of the speaker. An approach is presented in this paper
where spectrum based DNN inputs are augmented with speaker
inputs that are derived from separate regression based speaker trans-
formations. It is shown the proposed method could reduce the WER
by 3% relative to the best speaker adapted AE-BN CDHMM system.

Index Terms— Neural networks, speaker adaptation, speaker
normalization

1. INTRODUCTION

DNNs applied to acoustic modeling have advanced the state of the
art in many different ASR task domains[1]. They have been em-
ployed for representing local distributions in hybrid hidden Markov
model / neural network (HMM/NN) based ASR and for discrimi-
native feature extraction [2, 3]. The issue addressed in this work is
how DNN based models can be normalized using limited amounts
of adaptation data to minimize the impact of speaker variability.

This paper investigates an approach for generating DNN based
speaker adaptive discriminative features. These adapted features
are used as input to a continuous Gaussian mixture hidden Markov
model (HMM/GMM) based ASR system. One important aspect
of the approach is that it provides a mechanism for incorporating
well known regression based speaker adaptation techniques, such as
maximum likelihood linear regression (MLLR) [4] and constrained
MLLR (CMLLR) [5], to provide speaker information for estimat-
ing parameters in DNN based feature analysis. It is well known
that DNN based features can provide a significant reduction in ASR
WER compared to the traditional features such as mel-frequency
cepstrum coefficients (MFCCs). However, it is also true that this
improvement in WER is less significant if standard adaptation tech-
niques like MLLR or CMLLR are applied in HMM/GMM based
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ASR. This emphasizes the importance of developing effective adap-
tation scenarios for DNN based feature analysis.

Given an utterance from a particular speaker, the approach for
speaker adaptive DNNs presented in Section 3 relies on two sets of
input activations for each analysis frame. The first set of activa-
tions, updated at the frame rate, are derived from the MFCC fea-
tures. The second set of activations, held fixed as a representation
of the speaker, are a set of speaker parameters estimated using data
from that speaker. In this work, these speaker parameters are de-
rived from regression based transformations, estimated as described
in Section 3 using CMLLR, from the available data in utterances
taken from that speaker. Hence, prior knowledge of speaker char-
acteristics are provided in the form of the parameters of these trans-
forms as inputs to the DNN both in DNN training and in estimating
posterior features during recognition. One weakness of the proposed
method is that it assumes that enrollment data is available from each
speaker for estimating the speaker parameters, making it difficult to
apply in scenarios where this data is not available for some speakers.
Mixed mode training is introduced in Section 4 as a partial solu-
tion to this problem. Experiments were also conducted using MLLR
transforms as speaker representation and a similar gain to CMLLR
transforms is observed. Detailed results are not reported in this pa-
per.

It is helpful to consider this approach in the context of two adap-
tive discriminative feature analysis methods that have recently been
proposed in the literature. These two methods are referred to here
as the speaker factor [6] and the speaker code [7, 8] methods. The
first method was proposed by Ferras and Bourlard as a neural net-
work approach for factorizing speaker and phonetic information [6].
This involves building two bottleneck DNNs that share common in-
put layers. The first is trained as a phone classifier and the other is
trained as a speaker classifier. The outputs from the bottleneck layers
of the two DNNs are used as input features for a final phone recog-
nition system. It is argued here that parametric speaker represen-
tations used in Section 3 have the potential for incorporating more
prior speaker information in DNN training than is possible in [6],
when the data for estimating these representations is available.

The second method, proposed by Abdel-Hamid and Jiang, al-
lows for the encoding of speaker information at the input of the
DNN [7, 8]. This is done by including speaker normalization hid-
den layers as well as a speaker representation, or speaker code, pre-
ceding the input layer of a speaker independent DNN and updating
all of these parameters through backpropagation training. The pro-
posed approach differs from the previous work in that the speaker
representation is obtained from regression based parametric model
parameters that are used as input activations to the DNN for utter-
ances from a given speaker. This provides a means for incorporat-
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ing prior knowledge of speaker characteristics as well as a mech-
anism for reducing the complexity of simultaneous training of the
prepended speaker layers and the speaker representations.

The paper is organized as follows. A brief description of DNN
based feature analysis is given in Section 2. The approach for
speaker adaptive DNNs using parametric speaker representations is
presented in Section 3. An experimental study performed to evaluate
this approach on a large vocabulary English speech task is described
in Section 4. Summary and conclusions are provided in Section 5.

2. DNN BASED FEATURE ANALYSIS

The use of generative pre-training and large datasets in neural net-
work training have enabled the use of many hidden layers in deep
neural networks (DNNs) for ASR acoustic modelling. In addition,
the use of rectified linear units (ReLU), which are activation func-
tions of the form f(z) = max(0, z), has been shown to decrease
training time and improve classification performance in a number of
tasks [9, 10, 11]. DNNs with ReLU activation functions are used
for all the networks in this work. Soft −max activation functions
defined as

pi,xt =
exp(zLi,xt

)∑
k exp(z

L
k,xt

)
(1)

are used in the final network layer to model the posterior probability
for class i given input vector xt. In Equation 1, zLi,xt

and pLi,xt
are the

input and output for the ith neuron at layer L given input vector xt,
respectively. DNN parameters are typically trained by maximizing
the cross entropy

E =
∑
t

∑
i

p̂i,xt log pi,xt (2)

where p̂i,xt is the target probability, which is equal to 1 if i is the
target label and equal to 0 otherwise. In this work, the classes are
defined as the states of the context clustered HMMs.

DNNs configured with a low dimensional bottleneck middle
layer have been shown to provide improved ASR performance when
compared to other discriminative feature extraction approaches for
ASR [3]. The activations of the bottleneck layer in these networks
are used as feature vectors input to HMM/GMM based recognition.
Further improvements have been obtained by first performing DNN
training without a bottleneck layer and then training a second auto-
encoder neural network with a bottleneck middle layer [3] on top of
the original DNN. This two step training of auto-encoder bottleneck
(AE-BN) features is employed here for extracting discriminative
features for HMM/GMM recognition.

The AE-BN training can be summarized as follows. First, a
DNN model is trained according to the cross entropy based opti-
mization criterion in Equation 2. Second, a new auto-encoder DNN
with a bottleneck layer is trained on the top of the first DNN with
the last output layer dropped. An extra soft-max output is calculated
from the output of the first DNN before applying the non-linearity at
the last hidden layer. The parameters of the second AE-BN network
are optimized by the cross-entropy cost between the soft-max output
of the network and the extra soft-max output of the first DNN.

It is important to note here that our proposed method for speaker
normalization is not limited to the use of the AE-BN configuration of
the DNN. While the results of this experimental study mainly utilize
the AE-BN configuration of the DNN, in general it is applicable to
other DNN configurations as well. For example, we observed simi-
lar gains with a more general configuration of the bottle-neck DNN
system with the proposed method.

3. SPEAKER REPRESENTATION NORMALIZED DNN

This section describes a procedure for training DNNs in a speaker
adaptive mode using parametric speaker representations. Speaker
representations, derived from an auxiliary GMM model serve as an
additional input to the first layer along with frame based speech fea-
tures. This is described in detail in Section 3.1. A comparison of the
proposed method to well known methods of neural network adapta-
tion is described in Section 3.2.

3.1. Speaker information as extra DNN input

The block diagram in Figure 1, shows an outline of a framework
to train a DNN with a speaker representation. The input at the first
layer of the DNN is the concatention of two sets of activations. The
first, labelled as speech input, corresponds to frame based spectral
features and are updated for each frame. The second, labelled as
speaker input in the figure, characterizes an individual speaker and
is held fixed for the duration of that speaker’s utterances. More for-
mally this can be expressed as,

z1 = (w1)
T vd + (ws)

T vs + b1. (3)

Here vd denotes the speech input vector and w1 is the corresponding
weight matrix. Similarly, vs is the speaker input in the first layer and
ws is the speaker weight matrix. The vector b1 is the bias vector for
the first layer. The vector z1 is used to denote the collective set of
activations which are inputs to the neurons in the first layer.
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Fig. 1. Framework to build DNN with speaker representation.

The choice of speaker representation in this work is a vector-
ized CMLLR transform. The process of obtaining speaker inputs is
shown in the top half of the figure. The regression class based CM-
LLR transforms are derived from an auxiliary GMM model. This
auxiliary GMM model is trained using the maximum-likelihood cri-
terion on MFCC based spectral features. The vectorized transforms
are projected to a lower dimension using a principal components
analysis (PCA) transformation. The PCA transformation matrix is
trained on all of the training speakers’ vectorized transforms. The
principal components thus obtained were chosen so as to preserve
95% of the variance in the speaker data.

3.2. Speaker information as a speaker dependent bias

The DNN trained with a speaker representation that was proposed in
the previous section can also be interpreted as adapting the bias term
towards target speaker in the input layer. Hence, Equation 3 can be
re-written as:

z1 = (w1)
T vd + bs (4)

where bs = (ws)
T vs + b1. This perspective of viewing speaker

adaptation in the DNN could potentially reduce computational costs
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for speaker adaptation during test. This mode of rapid speaker adap-
tation during ASR is yet to be implemented in our current system.

It is also useful to compare the proposed method in the con-
text of the more well-known adaptation methods which work by ad-
justing weights toward adaptation data, such as Linear Input Net-
work(LIN) [12] and Linear Hidden Network (LHN) [13]. There are
two advantages for the proposed method with respect to these meth-
ods. First, an explicit speaker representation is used from the begin-
ning of DNN training, whereas the other methods only do adaptation
after the speaker independent DNN model is built. Thus, the pro-
posed method allows the DNN to learn from the input speaker rep-
resentation in the spirit of speaker adaptive training(SAT) [14]. This
approach removes speaker variability coded in speech spectral fea-
tures, thereby giving an improved speaker independent DNN. Such
a DNN can better focus on intra-speaker variability and good perfor-
mance can be expected. Second, vs is estimated through traditional
speaker adaptation algorithms in HMM/GMM systems. There are
many adaptation methods to choose from, with adaptation data vary-
ing from one utterance to several hours. So DNN adaptation based
on the proposed method could be used with different adaptation sce-
narios.

4. EXPERIMENTAL STUDY

An experimental study is performed to evaluate the impact of the
speaker normalized discriminative feature extraction approach pre-
sented in Section 3 on ASR performance. In addition to speaker
normalized feature extraction, MLLR/CMLLR based speaker adap-
tation is performed in the HMM/GMM ASR system. As a point of
reference, this performance is compared to the WER obtained using
MLLR/CMLLR based speaker adaptation applied in HMM/GMM
ASR without speaker normalized discriminative feature extraction.

4.1. Task Domain and Feature Extraction

The experimental study is conducted on a proprietary data set con-
sisting of English language speech. The speech corpus consists of
thousands of hours of speech collected under relatively clean acous-
tic conditions. All systems are trained from data consisting of ap-
proximately 10,000 speakers with an average of approximately 10
minutes of speech data per speaker. The evaluation corpus consists
of hundreds of speakers with approximately 1 hour of test utterances
per speaker and approximately 4 minutes of enrollment data per
speaker. The enrollment data in the evaluation set is used for training
the CMLLR based speaker vectors as described in Section 3.

The generation of speaker normalized discriminative features for
the AE-BN system in Figure 1, in both training and evaluation, con-
sists of the following components. First, spectral features are ex-
tracted for input to both the AE-BN network and the CMLLR trans-
form estimation from the auxiliary GMM shown in Figure 1. The
spectral features consist of 12 dimension MFCCs with appended
first, second, and third difference coefficients. Vocal tract length
normalization (VTLN) is also performend. These 48 dimensional
feature vectors are used as input to CMLLR transformation estima-
tion from the auxiliary GMM. The spectral feature vectors provided
to the DNN consist of concatenated vectors from five surrounding
frames resulting in a dimensionality of 528 (48*11).

The second component of feature generation is estimation of the
speaker vector input to the DNN shown in Figure 1. Mutliple re-
gression class CMLLR transform matrices have been investigated
as possible speaker representations. Transform estimation in Fig-
ure 1 involves estimating CMLLR transformations for two regres-

sion classes. The actual speaker vectors are obtained from these
matrices using PCA to obtain a low dimensional speaker activation
vector by transforming from (48 X 48 X 2) dimensions to a 1416
dimensional speaker vector.

The third component to feature generation is the AE-BN net-
work shown in Figure 1. The input activations consist of the con-
catenated spectral and speaker vectors described above. A DNN,
consisting of 7 layers, is trained in the first step of the procedure
described in Section 2. The first 5 hidden layers of this network con-
tain 1,000 nodes and the softmax output layer contains 3500 output
targets where the target classes correspond to the context dependent
states in the HMM/GMM acoustic model. The AE-BN, trained in
the 2nd step, has 5-layers where the layers contain 1000, 500, 40,
500 and 1000 nodes respectively. Weights and biases in both steps
are optimized using the standard backpropagation algorithm using
Gnumpy [15] and Cudamat [16] packages on a GPU server. The 40
dimensional output of the AE-BN network is taken from the 40 node
bottleneck layer.

The final component of the approach shown in Figure 1 is the use
of the speaker normalized discriminative features for ASR decoding
and training. The dimensionality of the 40 dimensional bottleneck
features is reduced to 32 using a heteroscedastic linear discriminate
analysis (HLDA) transformation. These transformed features are in-
put to the maximum likelihood trained HMM/GMM based ASR de-
coder.

4.2. Evaluation of Speaker Normalized Discriminative Features

In this section, the performance for several different definitions of
AE-BN based discriminitive features are evaluated including the
speaker normalized configuration described in Section 4.1. These
configurations will be evaluated on the test set described in Sec-
tion 4.1 in terms of the WERs obtained for the HMM/GMM ASR
system using the discriminative features as input. MLLR and CM-
LLR based speaker adaptation is also performed separately for
the HMM/GMM ASR system using the same enrollment data that
is used for estimating the speaker vectors in the speaker normal-
ized AE-BN. Therefore, the results reported in this section for
AE-BN features represent improvements made to the best perform-
ing speaker adaptive HMM/GMM ASR systems which employ
speaker adaptation during recognition. CMLLR adaptation for the
HMM/GMM recognizer is performed using a single regression class
and MLLR adaptation is performed using 156 regression classes.

Table 1 shows the WER obtained from the tandem configuration
of the AE-BN discriminative feature analysis and the HMM/GMM
ASR decoder. In this table The first row of the table, labeled
“MFCC”, refers to the baseline condition where HMM/GMM acous-
tic models are trained using MFCC features. “DNNs”, “DNN” and
“DNNn” represent three different definitions of AE-BN discrimina-
tive features. “DNNs” corresponds to the speaker normalized AE-
BN configuration described in Section 4.1. “DNN” and “DNNn”
share a configuration similar to the AE-BN network of “DNNs”, ex-
cept for the fact that they do not have a speaker input like the network
“DNNs” does. The networks “DNN” and “DNNn” differ in the kind
of features presented at the input layer. The features input to the
“DNNn” consist of MFCC features that are pre-transformed with
speaker-specific regression-class based CMLLR transforms. The
comparison of “DNNs” and “DNNn” illustrates the advantage of
using the vectorized CMLLR speaker information as a specific input
to the DNN (“DNNs”) rather than just performing CMLLR trans-
formation of the features (“DNNn”). The column labeled “None”
in Table 1 displays the WERs obtained when no adaptation is ap-
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Table 1. Comparison of HMM/GMMs with different DNN features.
Model AE-BN config. HMM/GMM Adaptation

feature speaker None CMLLR MLLR
norm. input

MFCC 7 7 10.76 9.99 9.44
DNN 7 7 9.23 8.71 8.32

DNNn 3 7 9.02 8.75 8.34
DNNs 7 3 8.57 8.39 8.08

plied to the HMM/GMM ASR system. The results in this column
demonstrate the impact on WER of performing speaker normalized
discriminative feature extraction while presenting the features to the
unadapted ASR system.

The following discussion compares the different feaure extrac-
tion and speaker adaptation scenarios in terms of their relative impact
on WER. It is clear from Table 1 that in general, the HMM/GMM
with DNN features are significantly better than the MFCC baseline.
Comparing the 1st and 2nd rows of Table 1, a 14.22% WER re-
duction (WERR) is observed when DNN AE-BN features are used
instead of MFCC features when no adaptation is applied. The gain
becomes smaller if speaker adaptation is applied during ASR. The
WERR is 12.81% if CMLLR adaptation is performed (5th col. of
Table 1) and 11.86% if MLLR adaptation is performed (6th col. of
Table 1) in HMM/GMM ASR.

Comparing the 2nd and 3rd rows of Table 1, a second ob-
servation that can be drawn is that the DNN trained with fea-
tures pre-transformed with the CMLLR (“DNNn”) has a 2.28%
WERR compared to the “DNN” baseline if no adaptation applied
on the HMM/GMM. This is smaller than the WERR achieved by
“DNNs”(7.16% compared to the “DNN” baseline), in which vec-
torized CMLLR transforms are used as speaker representation.
Furthermore, if speaker adaptation is applied to the HMM/GMM
ASR system, there is only a very small reduction in WER for the
“DNNn” features with respect to the “DNN” baseline. This obser-
vation agrees with results previously reported in [17, 18].

Finally, the results in Table 1 demonstrate that speaker normal-
ized DNNs result in an overall reduced WER when speaker adapta-
tion is performed for HMM/GMM ASR. The WER for the “DNNs”
is 3.67% smaller than the corresponding “DNN” baseline for the
CMLLR adapted ASR system. Furthermore, a 2.87% WERR is
achieved when the HMM/GMM is adapted using multiple MLLR
transforms.

4.3. HMM/GMM trained with mixed mode

A potential drawback of the proposed method is that a faithful
speaker representation is required at the DNN input during test.
Adequate amounts of adaptation data might be required to estimate
the speaker information(CMLLR transformations via the auxilary
model in this work, for example). If no adaptation/enrollment data is
available, identity transforms could be used in the place of speaker
representation. However, this introduces a train-test mismatch. The
mismatch can be alleviated by building a HMM/GMM using the
so-called “mixed-mode” training scenario.

In this training scenario, the training data set is divided into two
parts. The first part of the training set consists of the AE-BN features
extracted using the real speaker representation (vectorized CMLLR
transform in this work). The second part of the training data consists
of features extracted with the AE-BN DNN but with the correspond-
ing speaker information replaced with “’faked’ identity transforms.
The DNN used for this “mix-mode” feature extraction is the same as

Table 2. HMM/GMM trained with mixed mode
Model no enrollment 4min enrollment
DNN 9.23 8.32
DNNs 9.80 8.08

DNNs(mix) 9.54 8.01

the DNN used for the “DNNs” case in the previous section. In this
study, a new HMM/GMM is trained in mixed mode with 50% of the
speakers using their true speaker representation and the other 50%
of the speakers in the training set using identity transforms.

The results for this experimental study are shown in Table 2. The
table displays results for two enrollment scenarios - “No enrollment”
and “4 min” depending on the amount of adaptation/enrollment data
available per test speaker. The “no enrollment” case denotes tests
without enrollment data where the test features were extracted
so that the speaker input was set to a “faked” identity transform.
“DNNs(mix)” in this table denotes the use of the “mix-mode” fea-
ture set for training. Results for this training scenario are compared
to the “DNN” and “DNNs” results that were reported in Table 1.

Looking at the 1st column of Table 2, “DNNs” is 6.13% worse
compared to the corresponding DNN results due to mismatch of
training and test scenarios when no enrollment data is available.
The gap is reduced to 3.41% when HMM/GMM is trained with
mixed mode. On the other hand, when adaptation data is available
(“4 min. enrollment”), mixed mode trained model (“DNNs(mix)”)
achieves similar results if not better as the one with true speaker
representation only model (“DNNs”). In this test scenario, MLLR
is employed on the HMM/GMMs during ASR with 4 min. enroll-
ment data. The same enrollment data is used for DNN feature nor-
malization when test features were generated for the “DNNs” and
“DNNs(mix)” cases.

5. CONCLUSIONS
A speaker normalization procedure for discriminative feature esti-
mation has been presented in the context of an auto-encoder bottle-
neck (AE-BN) DNN front-end for ASR. Speaker normalization is
performed by augmenting spectrum based DNN inputs with speaker
inputs that are derived from separate regression based speaker trans-
formations. It was argued that, in theory, these speaker normalized
AE-BN DNNs should provide an efficient characterization of both
intra-speaker and inter-speaker variability. The proposed method
is evaluated using a tandem configuration where speaker normal-
ized AE-BN features are input to an HMM/GMM ASR system. The
speaker normalized AE-BN features were shown to reduce WER by
approximately 3% relative to AE-BN features using no speaker nor-
malization.

Mixed-mode training of the HMM/GMM ASR system is in-
vestigated to deal with scenarios where enrollment data may not be
available for some speakers during recognition. This HMM/GMM
training mode for ASR involves using features in training that are
obtained from a mixture of both speaker normalized DNNs and
from DNNs trained using “degenerate” speaker representations. The
mixed-mode trained HMM/GMM recognizer was shown to be more
robust to lack of a speaker dependent enrollment data in recognition.
WER was reduced by 2% with respect to normal training when
no enrollment data was available during testing. Similar WER re-
duction was was achieved using mixed-mode training even when
speaker dependent enrollment data was available.
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