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ABSTRACT

A two-stage speaker adaptation approach is proposed for the
subspace Gaussian mixture model (SGMM) [1] in large vo-
cabulary automatic speech recognition (ASR). The SGMM
differs from the more well known continuous density hid-
den Markov model (CDHMM) in that a large portion of the
SGMM parameters are dedicated to shared full covariance
Gaussian subspace parameters and a relatively small number
of parameters are used for state dependent projection vectors.
Both model space and feature space adaptation are investi-
gated. First, an efficient regression based approach for sub-
space vector adaptation (SVA) is presented. Second, an effi-
cient approach is presented for feature space adaptation using
constrained maximum likelihood linear regression (CMLLR)
in the SGMM. While both of these adaptation scenarios have
previously been investigated in the context of the SGMM [2,
3], a more efficient and numerically stable procedure is pre-
sented here for estimating the parameters of the regression
based transformations. Both transformation matrices are ob-
tained using an optimization technique that iteratively updates
the rows of the regression matrices. It is shown that using
these feature space and model space approaches for unsuper-
vised speaker adaptation provides complementary improve-
ments in SGMM based ASR word accuracy.

Index Terms— Speaker adaptation, Phonetic subspace,
Constrained MLLR, Row-by-row update

1. INTRODUCTION

This paper presents an efficient optimization approach for es-
timating regression based adaptation parameters in the sub-
space Gaussian mixture model (SGMM) [1]. This approach
is applied to unsupervised speaker adaptation in large vocab-
ulary ASR. The SGMM is an alternative acoustic modeling
technique to the continuous density hidden Markov model
(CDHMM). SGMM parameters represent a globally shared
model subspace which is trained from data to capture princi-
pal directions of phonetic variability using low dimensional
state-dependent vectors referred to as “state projection vec-
tors”. A large portion of the SGMM parameters are dedi-
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cated to shared full covariance Gaussian subspace parameters
and a relatively small number of parameters are used for state
projection vectors. In practice, the SGMM facilitates acous-
tic modeling with a smaller amount of training data. This
is thought to result partly from the subspace constraints pro-
vided by the model structure and partly due to the overall re-
duction in the total number of model parameters [4].

The estimation of both feature space and model space lin-
ear regression matrices for speaker adaptation is addressed
in the context of the SGMM acoustic model. First, a model
space approach is described in Section 3 where a linear re-
gression based transformation is used for unsupervised adap-
tation of state projection vectors to new speakers. This ap-
proach, referred to as subspace vector adaptation (SVA), was
motivated in [2] by studies which demonstrated an empiri-
cal relationship between SGMM state projection vectors and
articulatory information in speech [2, 5]. It was shown in [2]
that, while SVA resulted in a substantial improvement in word
accuracy (WAC) in multiple task domains, the full matrix up-
date solution for the regression matrix is both numerically un-
stable and computationally expensive. To deal with this issue,
a more stable and efficient row-by-row update method is pre-
sented in Section 4.1 where the SVA regression matrix is es-
timated by iteratively updating its rows.

The second speaker adaptation approach investigated here
involves feature space adaptation using constrained maximum
likelihood linear regression (CMLLR) in the SGMM. Apply-
ing a linear transformation in the feature space is widely
known to be effective for speaker adaptation in the CDHMM
framework [6–8]. CMLLR was applied in [3] to feature space
adaptation in the SGMM. Solution for the maximum likeli-
hood estimate of the optimum CMLLR transformation ma-
trix is complicated in the case of the SGMM by the fact that
the underlying subspaces are represented by full covariance
Gaussian densities. A repeated line search in the direction of
the gradient was used in [3] resulting in a computationally
expensive solution as is discussed in Section 3. A simpler
and more efficient procedure for obtaining the CMLLR trans-
formation matrix for the SGMM using a row-by-row update
method is presented in Section 4.2.

The key to simple and efficient maximum likelihood esti-
mation of both SVA and CMLLR transformations is the row-
by-row update algorithms presented in Section 4. These ap-
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proaches are similar to that used by Sim et. al. in [9] for
adapting precision matrix models in the CDHMM. The results
of an experimental study presented in Section 5 demonstrate
that complementary improvements in ASR word accuracy are
obtained by combining these two approaches in an unsuper-
vised speaker adaptation scenario.

2. SUBSPACE GAUSSIAN MIXTURE MODEL

This section provides a summary of the SGMM acoustic
model [1]. The observation densities in an SGMM system
with J states for a feature vector x(t) in state j is given as:

bj(x(t)) =

I∑
i=1

ωjiN (x(t)|µji,Σi). (1)

The means, µji, and mixture weights, ωji, are controlled
by a global mapping from a vector space, through a single
“state projection vector,” to the GMM parameters space. The
full-covariance matrices, Σi, are shared among all the HMM
states.

The ith mean vector for state j is a projection into the ith

subspace defined by a S × S linear subspace matrix Mi as
µji = Mivj . The S × 1 state projection vectors, vj , are
the state specific parameters in the SGMM. The weights, ωji,
in (1) are obtained from the vj using a log-linear model:

ωji =
expωT

i vj∑I
i′=1 expωT

i′vj

(2)

where ωi denotes the weight projection vector for the ith sub-
space. A more detatiled discussion of the SGMM model pa-
rameterization and parameter estimation is provided in [1].

3. SGMM SPEAKER ADAPTATION

This section presents the objective functions that are opti-
mized for full matrix estimation of SVA and CMLLR regres-
sion transformations in the SGMM [2, 3]. The numerical is-
sues associated with these full matrix estimates are also dis-
cussed and motivation is provided for the row-by-row solu-
tions presented in Section 4.

3.1. Subspace Vector Adaptation (SVA)

This section provides a brief description of the subspace vec-
tor adaptation (SVA) introduced in [2]. An affine transforma-
tion is defined for state project vector adaptation:

v̂j = Avj + b =
[

A b
] [ vj

1

]
= Wuj (3)

in which A is a S × S matrix and b is a S × 1 vector. The
transformation matrix W is found in a maximum likelihood
(ML) fashion. The required auxiliary function is as:

Q(W) =
∑
j

fTj Wuj − 0.5
∑
j

uT
j WTCjWuj (4)

where

fj =
∑
i

(γji − γj ¯̄ωji + max(γj ¯̄ωji, γji)ω
T
i

¯̄Wuj)ωi + yj

Cj =
∑
i

(
max(γj ¯̄ωji, γji)ωiω

T
i + γjiHi

)
(5)

are the necessary statistics that need to be accumulated [2].
The summation over j in (4) is computed for the states associ-
ated with a given regression class. The ¯̄ωji and ¯̄W correspond
to their current values and

Hi = MT
i Σ−1i Mi

yj =
∑

t,i γji(t)M
T
i Σ−1i xT (t)

γji =
∑

t γji(t).

(6)

In (6), γji(t) is the probability of being in state j and Gaussian
mixture component i at time t and X = {x(1), . . . ,x(T )} is
the sequence of the adaptation feature vectors on which the
transformation is to be trained. Getting a closed form solution
for the transformation parameters requires inverting a low-
rank S2 × S2 matrix which is computationally expensive and
causes numerical instability. Therefore, [2] takes a gradient
ascent approach to overcome these issues. To do so, a closed
form solution is obtained for the bias term b and a gradient
ascent technique is obtained for the matrix A:

A(k) = A(k−1) + λ(k−1)
∂Q(W)

∂A

∣∣∣∣
A(k−1)

(7)

where ∂Q(W)
∂A =

∑
j fjv

T
j −

∑
j CjWujv

T
j . Nevertheless,

this update method itself raises some other problems. First,
b and A are updated separately, which might introduce some
estimation mismatch. Second, the gradient matrix in (7) needs
to be computed at each update iteration. This is clearly com-
putationally expensive. Third, using a single step size is not
a reasonable choice as different rows of A might need to be
updated with different step sizes. As a result, it is difficult to
obtain a reliable and efficient estimate of the transformation
matrix using this approach. To solve these issues, we propose
a new row-by-row update method in Section 4.1 in which W
is estimated by iteratively updating its rows. This method not
only provides a very simple update procedure, but is also nu-
merically well-behaved.

3.2. Constrained MLLR (CMLLR)

This section provides a brief description of the constrained
maximum likelihood linear regression (CMLLR) technique
introduced in [3]. This method uses an affine transformation
of the form:

x̂(t) = Ax(t) + b =
[

A b
] [ x(t)

1

]
= Wζ(t) (8)

in which x(t) is the adaptation data at time t. The required
auxiliary function is as:

Q(W) = β log |det A|+ tr(WK̄T )− 0.5
∑

i tr(WGiW
TΣ−1i ) (9)

6375



where

β =
∑

t,j,i γji(t)

K̄ =
∑

t,j,i γji(t)Σ
−1
i µjiζ(t)T

Gi =
∑

t,j γji(t)ζ(t)ζ(t)T
(10)

and summation over t is computed for the set of frames that is
associated with a given regression class [3]. To maximize (9)
w.r.t. W, a repeated line search is performed in the direction
of gradient [3]. To do so, a pre-transformation is used so that
the expected Hessian matrix is proportional to identity matrix.
Nevertheless, this algorithm is computationally expensive and
does not have an efficient closed form solution. To overcome
these problems, we propose a simple and efficient row-by-
row update method in Section 4.2 in which W is estimated
by iteratively updating its rows.

4. ROW-BY-ROW APPROACH

4.1. Row-By-Row Approach to SVA

A new optimization method is proposed here for finding the
SVA transformation matrix. Starting from (4), one can re-
write the auxiliary function in terms of the rows of W:

Q(W) =
∑
p

wpk
T
p − 0.5

∑
l,p

wlF
(l,p)wT

p (11)

in which wp and kp are the pth rows of W and K, respec-
tively, and K and F(l,p) are defined as follow:

F(l,p) =
∑
j

uju
T
j c

(l,p)
j

K =
∑
j

fju
T
j

(12)

where c(l,p)j is the (l, p)th element of matrix Cj . In order
to optimize (11) w.r.t. the rth row of W, we assume that
the remaining rows are fixed to their current values. By re-
ordering (11) w.r.t. wr and discarding the other terms, one
can define the row-wise auxiliary function as:

Q(wr) = wr(kT
r −

∑
p 6=r

F(r,p)wT
p )−0.5wrF

(r,r)wT
r . (13)

Differentiating (13) w.r.t. wr and equating it with zero:

ŵr = (kr −
∑
p 6=r

wpF
(r,p))F(r,r)−1

. (14)

It is apparent that this update formula is dependent on the
other rows through the summation in (14). Therefore, an ini-
tial estimate of W = [A b] is required and an iterative ap-
proach is utilized. Although A and b can be initialized as an
identity matrix and a zero vector, respectively, a better starting
point can be achieved by using a diagonal A approximation
and using (14). Multiple epochs are run over the adaptation
data. Four epochs have been found to be sufficient. Algo-
rithm 1 summarizes the row-by-row approach to SVA.

Algorithm 1: Row-by-row update approach to SVA

for epoch=1 to 4 do
• Accumulate Statistics:

– Do Forward-Backward to get γji(t)
– Compute Hi, yj and γji as (6)
– Compute Cj and fj as (5)
– Compute K and F(l,p) as (12)

• Initialize:
– W0 = [I,0]
– Using diagonal assumption, use (14) to
obtain a better initialization for W

• for iteration=1 to 10 do
for row=1 to S do

– Use (14) to find a new estimate: ŵr

– if Q(ŵr) > Q(wr) then
update the row

• Update vj as (3)

4.2. Row-By-Row Approach to CMLLR

A row-by-row technique is proposed for estimating the
CMLLR transformation matrix which is similar to that of
Section 4.1. Re-writing (9) in terms of rows of W:

Q(W) = β log |det A|+
∑

p wpk̄
T
p − 0.5

∑
l,p wlF̄

(l,p)wT
p (15)

where wp and k̄p are the pth rows of W and K̄, respectively.
In (15), F̄(l,p) is defined as :

F̄(l,p) =
∑
i

Giσ
(l,p)
i (16)

where σ(l,p)
i is the (l, p)th element of Σ−1i . In order to opti-

mize (15) w.r.t. the rth row of W, we assume that the remain-
ing rows are fixed to their current values. By re-ordering (15)
and just keeping terms dependent on wr, one can define the
row-wise auxiliary function as:

Q(wr) = β log |prw
T
r |+ wr(k̄T

r −
∑

p 6=r F̄(r,p)wT
p )− 0.5wrF̄

(r,r)wT
r

where pr = [ pr1 . . . prn 0 ] is the extended cofactor
vector in which pij = cofactor(Aij). Taking the derivative
w.r.t. wr and equating with zero, we can find the optimum
row vector:

ŵr = (αpr + k̄r −
∑
p 6=r

wpF̄
(r,p))F̄(r,r)−1

(17)

and α is the root of equation defined as:

α2prF̄
(r,r)−1

pT
r +αprF̄

(r,r)−1

(k̄T
r −
∑
p 6=r

F̄(r,p)wT
p )−β = 0.

This is similar to the procedure followed in [8]. This update
formula is dependent on the other rows through the summa-
tion in (17). Therefore, an initial estimate of W = [A b] is
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required and an iterative approach is utilized. We initialize A
and b as an identity matrix and a zero vector, respectively1.
Multiple epochs are run over the adaptation data. Six epochs
have been found to be sufficient. Algorithm 2 summarizes the
row-by-row optimization approach to CMLLR.

Algorithm 2: Row-by-row update approach to CMLLR

for epoch=1 to 6 do
• Accumulate Statistics:

– Do Forward-Backward to get γji(t)
– Compute β, K̄ and Gi as (10)
– Compute F̄(l,p) as (16)

• Initialize: W0 = [I,0]
• for iteration=1 to 10 do

for row=1 to S do
– Use (17) to find a new estimate: ŵr

– if Q(ŵr) > Q(wr) then
update the row

• Transform feature vectors as (8)

5. EXPERIMENTAL STUDY

This section presents an experimental study evaluating the
performance of SVA and CMLLR adaptation techniques. Per-
formance is reported as the word error rate (WER) on the re-
source management (RM) speech corpus. CDHMM training
is done using the standard HTK toolkit [10] and SGMM train-
ing is done using an extended version of HTK [4].

The RM training corpus consists of 3990 utterances taken
from the RM SI-109 training set. The 39 dimensional fea-
ture vectors consists of 12 MFCCs, normalized energy and
the first and second differences. The baseline CDHMM sys-
tem uses three-state left-to-right HMM triphone models. De-
cision tree clustering was used to obtain a system with 1704
states, each having 6 Gaussian mixtures per state. The choice
of the number of Gaussians per state was obtained by observ-
ing the performance of the CDHMM system on the test set.
The SGMM system was trained using the same training data
set with I = 256 Gaussian mixtures shared between 1704
states. ASR WER was evaluated using 1200 utterances from
12 speakers taken from the RM speaker dependent evaluation
(SDE) set. Recognition was performed using the standard RM
991 word bi-gram language model.

Table 1 displays the WERs for all the systems evaluated in
the study. The baseline SGMM is shown to provide a reduc-
tion in WER of approximately 10% relative to the baseline
CDHMM. Speaker adaptation experiments are performed in
an unsupervised mode with an average duration of 5.33 min-
utes of data per speaker by using two regression classes of
speech and silence. The second row of Table 1 shows

1Unlike the SVA case, diagonal A approximation for initialization does
not give any further recognition improvement.

Table 1. The ASR WER for different unsupervised speaker
adaptation scenarios

System WER [%]
Baseline CDHMM 4.91
CDHMM+CMLLR 3.33
Baseline SGMM 4.52
SGMM+SVA (full matrix) 3.90
SGMM+SVA 3.51
SGMM+CMLLR 3.15
SGMM+SVA+CMLLR 3.09
SGMM+CMLLR+SVA 2.89

that CMLLR adaptation applied to the CDHMM provides
a 32% reduction in WER relative to the CDHMM baseline
WER. Rows four and five of Table 1 show the ASR result
for SVA by using “full matrix” and “row-by-row” methods,
respectively. The row-by-row update method significantly
improves the ASR performance while reducing the compu-
tational complexity by an order of 4. The sixth row shows
that CMLLR adaptation obtained using the row-by-row up-
date method provides 30% reduction in WER relative to
the SGMM baseline. We speculate that a similar reduction
in complexity might be seen by comparing the full matrix
method given in [3] and our proposed row-by-row update
method in Section 4.2.

In the last experiment, we use SVA and CMLLR ap-
proaches in a complementary mode. Row eight of Table 1
displays the WER when CMLLR feature space adaptation is
performed followed by SVA model space adaptation for the
SGMM. It is clear from the table that combining feature space
and model space speaker adaptation provides complementary
improvement in the recognition performance.

6. CONCLUSION

A new optimization method was proposed for estimating the
adaptation parameters in subspace vector adaptation and con-
strained MLLR speaker adaptation techniques in the SGMM
framework. In both cases, the transformation matrices were
obtained by iteratively updating their rows. The experimen-
tal studies were done for RM speech corpus. We observed
that the row-by-row update method not only provides an effi-
cient estimate of the transformation matrices, but also greatly
reduces the computational complexity. We finally observed
that combining SVA and CMLLR adaptation techniques in
the SGMM framework in a complementary mode can provide
36% relative reduction in the WER with respect to the SGMM
baseline. Future work will investigate the application of pro-
posed method to other less numerically stable EM based pa-
rameter estimation and adaptation, for example, dealing with
acoustic mismatch for training multilingual SGMM [11, 12].
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