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ABSTRACT

The use of a graph embedding framework is investigated as
a regularization technique in the expectation-maximization
(EM) algorithm applied to automatic speech recognition
(ASR). The technique is motivated by the fact that graph em-
beddings of feature vectors have been shown to provide useful
characterizations of the underlying manifolds on which these
features lie. Incorporating intrinsic graphs that describe these
manifolds in the optimization criteria for the EM algorithm
has the effect of constraining the solution space in a way that
preserves the local structure of the data. Graph embedding
based regularization is applied here to estimating param-
eters in constrained maximum likelihood linear regression
(CMLLR) speaker adaptation in continuous density hidden
Markov model (CDHMM) based ASR. CMLLR adaptation
has been widely used as a maximum likelihood procedure
for reducing mismatch between a given HMM model and
utterances from an unknown speaker through a linear feature
space transformation. However, there is no guarantee that
CMLLR transformations will preserve the relationships of
the feature vectors along this manifold. It is argued here
that graph embedding based regularization will preserve this
structure. The impact of this approach on ASR performance
is evaluated for unsupervised speaker adaptation on two large
vocabulary speech corpora.

Index Terms— Graph embedding, Regularization, Speaker
adaptation, Constrained MLLR

1. INTRODUCTION

Applying a transformation either in model-space or feature-
space has been shown to be a powerful tool for speaker adap-
tation in CDHMM based ASR [1–4]. The most well known of
these techniques include maximum likelihood linear regres-
sion (MLLR) [1–3,5], applied to model space adaptation, and
constrained MLLR (CMLLR) [6, 7], applied to feature space
adaptation. The parameters of the transformation are esti-
mated according to a maximum likelihood (ML) criterion us-
ing the expectation-maximization (EM) algorithm [8]. In the
case of CMLLR, the resulting regression based transforma-
tion can be said to have the effect of transforming the feature
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vectors so that the adaptation data is more likely to have been
generated by the CDHMM. However, there is no guarantee
that the local relationships between vectors in the original fea-
ture space will be preserved among the CMLLR transformed
features.

There have been two approaches applied to constraining
the estimates of CMLLR/MLLR parameters. The first is to
use a maximum a posteriori (MAP) criterion which introduces
a prior distribution on the parameters [9,10]. In MAP estima-
tion, some values of parameters are more likely than others
and this knowledge can be used to preserve the structure of
the acoustic space [9, 10]. Another approach is to use a regu-
larizer term in the optimization criterion in order to constrain
the solution space. This can also be interpreted as an alterna-
tive way of selecting the prior distribution function [11, 12].

In this paper a new regularization approach is presented
which estimates the transformation parameters while preserv-
ing the local relationships among the feature vectors in the
transformed space. To do so, a graph-embedding framework
is used [13]. The notion of using graph-embedding as a ge-
ometric framework for learning from labeled and unlabeled
data was first proposed in [14] and was referred to as manifold
regularization. Manifold regularization has also been applied
to semi-supervised learning for multi-layer perceptrons [15]
and deep learning [16]. In this paper, the framework is used
to characterize the geometric properties of feature vectors de-
rived from unlabeled speech spectra. In Section 3, manifold
regularization is described as a two step procedure. First, a
characterization of the feature space is acquired by estimat-
ing an intrinsic graph in the form of an intrinsic matrix from
feature vectors. Then, the intrinsic matrix is incorporated into
the auxiliary function for CMLLR parameters estimation.

The paper is organized as follows. Section 2 describes
the standard CMLLR technique. Section 3 describes the new
regularization formulation. In Section 4 we describe our ex-
perimental setup and the ASR results. Finally we conclude
the paper in Section 5.

2. CONSTRAINED MLLR

Constrained MLLR (CMLLR) is a feature-space adaptation
technique which was first introduced in [2]. Assuming o(τ)
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as the feature vector at time τ , the adapted feature vector is:

ô(τ) = Ao(τ) + b = Wζ(τ), (1)

where Wd×(d+1) = [ Ad×d bd×1 ] is the transformation
matrix and ζ(τ) = [ o(τ)T 1 ]T is the extended observa-
tion vector. Considering diagonal covariance matrices, the
auxiliary function for estimating W is given by:

Q(W) = β log(piw
T
i )− 1
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where wi is the ith row of W, pi = [ ci1 . . . cin 0 ] is
the extended cofactor vector in which cij = cof(Aij) and
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i are the ith and the (i, i)th elements of the mean
and covariance for component m, respectively [17]. γm(τ)
is the probability of being in component m at time τ and
O = {o(1), . . . ,o(T )} is the adaptation data sequence. Dif-
ferentiating Q(W) w.r.t. wi and equating it with zero, the ith

row of W can be found as:

wi = αpiG
(i)−1 + k(i)G(i)−1, (3)

where α is the root of equation defined as below [17]:

α2piG
(i)−1pTi + αpiG

(i)−1k(i)T − β = 0.

3. REGULARIZATION APPROACH

3.1. Defining regularized auxiliary function

The goal here is to define a cost function in order to pre-
serve the locality of the feature vectors in the adapted space.
This will follow the graph-embedding framework for charac-
terizing geometric properties of the feature vectors [13]. We
define an undirected weighted graph, called intrinsic graph
G = {O,Ω}, where O represents the graph nodes and con-
tains all the unadapted feature vector and Ω is the intrinsic
affinity weight matrix with elements defined as:

ωττ ′ =


exp

(
−‖o(τ)−o(τ

′)‖22
ρ

)
I(o(τ),o(τ ′)) = 1

0 I(o(τ),o(τ ′)) = 0

, (4)

where ρ is the kernel scale parameter. The indicator function
I(o(τ),o(τ ′)) is equal to 1 if o(τ) and o(τ ′) lie within the
same regression class1 and are close in terms of Euclidean

1For example regression class of speech or silence

distance. In the other words, o(τ ′) is close to o(τ) if it is in
the K-nearest neighbor of o(τ).

In the adapted space, we would like to preserve the close-
ness of the nearby points. It means that if two points of the
graph in the original space are close, i.e. have large weight
ωττ ′ , they should be close in the adapted space as well. So,
we introduce a graph-preserving measure:

S(W) =
1

T

∑
τ 6=τ ′

‖ô(τ)− ô(τ ′)‖22 ωττ ′ , (5)

in which ô(τ) and ô(τ ′) are observation vectors in adapted
space corresponding to o(τ) and o(τ ′), respectively. Fol-
lowing from (4), it is clear that ωττ ′ is zero for observation
vectors from different classes. So, we can re-write the graph-
preserving measure for a given class as follows:

S(W) =
1

T

∑
τ 6=τ ′

‖Wζ(τ)−Wζ(τ ′)‖22 ωττ ′ . (6)

By defining R as an affinity matrix:

R =
1

T

∑
τ 6=τ ′

ωττ ′ (ζ(τ)− ζ(τ ′)) (ζ(τ)− ζ(τ ′))
T
, (7)

and re-writing S in term of rows of W, we have:

S(W) =
∑
i

wiRwT
i . (8)

Now, we define the regularized auxiliary function as:

Qreg(W) = Q(W)− θ S(W), (9)

in which θ > 0 is the trade-off parameter between the ML-
based auxiliary function and locality preserving measure.
Substituting (2) and (8) in (9), we have:

Qreg(W) = β log(piw
T
i )− 1

2

∑
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)
, (10)

in which G
′(i) = G(i) + 2θR. It is worth noting that this

auxiliary function is very similar to that of standard CMLLR
except for the additional term related to the locality preserv-
ing measure. Therefore, we can use the same optimization
procedure only with substituting G(i) with G

′(i).

3.2. Relation to other regularization techniques

It is interesting to note that in the degenerate case, when the
affinity matrix R is set to:

R =

[
Id×d 0d×1
01×d 0

]
, (11)

then the graph-preserving measure will reduce to the square
of Frobenius norm of transformation matrix:

S(W) =
∑
i

wiRwT
i =

∑
i

aia
T
i = ‖A‖2F . (12)

This case is studied in [12] under the name of “shrinkage
model adaptation” in the context of regularized CMLLR.
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3.3. Discussion

The need for calculating on the order of N2 nearest neighbor
relationships in (4), whereN is the number of feature vectors,
makes the computational complexity associated with estimat-
ing the affinity matrix, R, quite high. However, estimation
of R is generally done in an unsupervised manner so no tran-
scribed speech is required. While separate class dependent
affinity matrices are discussed in Section 3.1, only two classes
for speech and non-speech frames are defined here, which
simply assumes the existence of a speech/non-speech detec-
tor. For the experimental study in Section 4, affinity matri-
ces are estimated prior to recognition from the same training
data used for estimating CDHMM models. While it could be
argued that manifold based regularization could benefit from
affinity matrices estimated from large amounts of speaker spe-
cific data, it is not practical to estimate these matrices during
any reasonable speaker adaptation scenario. This is due to
both the excessive computational complexity associated with
estimating affinity matrices and insufficient amounts of avail-
able adaptation data.

4. EXPERIMENTAL STUDY

This section presents an experimental study evaluating the
performance of manifold regularized CMLLR for unsuper-
vised speaker adaptation. Performance is evaluated in terms
of ASR word error rate (WER) using the Spanish CallHome
and Resource Management (RM) speech corpora. All the
HMM training was done using the HTK toolkit [18].

4.1. Spanish CallHome conversational speech corpus

4.1.1. Baseline System

CDHMM models were trained from 16.5 hours of conversa-
tional telephone speech. The baseline system uses three-state
left-to-right HMM clustered context models, with a total of
1604 states and 16 Gaussian mixtures per state. 13 PLP fea-
tures with their first and second differences were used. A tri-
gram LM was used with a vocabulary of 45k words.

4.1.2. Adjusting regularization parameters

There are three parameters that need to be adjusted for man-
ifold regularization. Two of these parameters, ρ and K, de-
termine the characteristics of the local neighborhood in the
affinity matrix. The third parameter, θ, determines the rela-
tive weight of the regularization term in the auxiliary func-
tion given by (9). To do so, all 122.35 minutes of test data,
collected from 46 speakers, is divided into a development
(Dev) set and an evaluation (Eval) set. The Dev and Eval
sets contain 34.56 and 87.77 minutes of data, respectively.
The best setting for these parameters is determined empiri-
cally by performing manifold regularized speaker adaptation
on the Dev set. The optimum parameter settings were found
to be ρ = 60, θ = 10 and K = 80.

Table 1. The unsupervised ASR WER on Eval and Dev sets
for Spanish CallHome corpus

Set BL CMLLR reg. CMLLR Frob. Norm
Dev. 69.48 67.92 67.32 67.77
Eval. 68.29 67.08 66.19 66.57

4.1.3. Regularized CMLLR performance

Table 1 displays WERs obtained for speaker adaptation on
Dev and Eval sets. The first column displays the unadapted
baseline (BL) WERs. The ASR WERs for CMLLR speaker
adaptation without regularization are displayed in the second
column of Table 1. CMLLR matrices are estimated for two
regression classes representing speech and silence.

The third column of Table 1 displays the WERs for the
manifold regularized CMLLR. Manifold regularization is per-
formed by estimating two affinity matrices from the training
corpus, one for each regression class, by using (7). The train-
ing data consists of 4.16 hours of silence and 12.34 hours of
speech. Here, we use 4.16 hours of silence and 4.16 hours of
speech2. It is clear from the table that manifold regularized
CMLLR results in approximately 1% absolute reduction in
WER on the Eval set relative to unregularized CMLLR. This
difference in WER was found to be statistically significant at
a confidence level of less than one percent according to the
matched-pairs significance test [19].

In Section 3.2 it was noted that the graph-preserving
measure degenerates to shrinkage model adaptation when
the affinity matrix is reduced to the form shown in (11). To
evaluate the performance of this regularization approach it is
only necessary to adjust the value of θ because R is simply
fixed. The optimum value of θ = 450 was empirically deter-
mined on the Dev set. The last column of Table 1 displays
the WERs obtained for this Frobenius norm based adapta-
tion. The WER on the Eval set is shown to be slightly higher
than that obtained for manifold regularized CMLLR. This
difference in WER was found to be statistically significant at
a confidence level of less than ten percent according to the
matched-pairs significance test [19]. This suggests that the
information obtained from the intrinsic graph for manifold
based regularization has some benefit beyond that derived
from constraining the norm of the adaptation parameters.

4.1.4. Speaker adaptive training

A study was performed to evaluate the impact of manifold
based regularization for CMLLR adaptation when CDHMM
models are trained using speaker adaptive training (SAT) [20].
SAT involves performing CMLLR based speaker normaliza-
tion as part of CDHMM training, resulting in acoustic models
that are inherently more robust with respect to speaker vari-
ability. Table 2 displays the ASR results on the Eval set. The
first column indicates whether or not manifold regularization

2It was observed that using this amount of speech data is a good trade-off
between robustness and complexity.
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Table 2. The unsupervised ASR WER on Eval set with SAT
technique for Spanish CallHome corpus

SAT Speaker Adaptation WER
CMLLR CMLLR 65.48
CMLLR reg. CMLLR 65.21

reg. CMLLR reg. CMLLR 65.26

is used for CMLLR during SAT training. The second col-
umn indicates whether manifold based CMLLR is used for
speaker adaptation in decoding, and the last column displays
the WER. By comparing the first and second rows, one can
conclude that performing SAT without regularization in train-
ing and performing regularized CMLLR adaptation in decod-
ing gives slightly lower WER than the case where no manifold
regularization is used for CMLLR adaptation. Nevertheless,
the WER reduction is very small. This could be due to the fact
that using SAT during training produces a CDHMM model
with less variance than the original model. This results in
less perturbation of the underlying structure of the data when
estimating CMLLR transformations. Therefore, the regular-
ization technique has only a minor impact during recognition.

4.2. Resource Management read speech corpus

4.2.1. Baseline System

The RM corpus consists of 3990 utterances. The speech is
parameterized using 12 MFCCs, normalized energy and the
first and second differences. The baseline system uses three-
state left-to-right HMM clustered context models, with a total
of 1704 states and 6 Gaussian mixtures per state. No SAT
was used during training the baseline models. A 991 word
bi-gram language model was used.

4.2.2. Adjusting regularization parameters

All 63.98 minutes of test data, collected from 12 speakers,
is divided into Dev and Eval sets. The Dev and Eval sets
contain 16.52 and 47.46 minutes of data, respectively. The
best setting for these parameters is determined empirically by
performing manifold regularized speaker adaptation on the
Dev set. The optimum parameter settings were found to be
ρ = 40, θ = 65 and K = 70.

4.2.3. Regularized CMLLR performance

Table 3 displays WERs obtained for speaker adaptation on
Dev and Eval sets. The first column displays the BL WERs.
The ASR WERs for CMLLR speaker adaptation without reg-
ularization are displayed in the second column. The third
column displays the WERs for the manifold regularized CM-
LLR. Manifold regularization is performed by estimating two
affinity matrices from the training corpus as was done in Sec-
tion 4.1. A total of 25.66 minutes of silence and 3.36 hours
of speech from the RM corpus are used. The last column

Table 3. The unsupervised ASR WER on Eval and Dev sets
for RM corpus

Set BL CMLLR reg. CMLLR Frob. Norm
Dev. 5.40 3.60 3.56 3.49
Eval. 4.74 3.37 3.18 3.23

displays the WERs obtained when Frobenius norm based reg-
ularization is applied to CMLLR adaptation as was done in
Section 4.1. The results were obtained for the optimum value
of θ = 1450 that was determined empirically on the Dev set.

It is clear that the manifold learning based regularization
has only a minor impact on ASR WER for the RM corpus.
This marginal improvement may result both from the small
size of the corpus and also from the fact that the corpus was
collected under well controlled high SNR acoustic conditions
and controlled read speech speaking conditions. So the reg-
ularization constraints may have less impact on WER. This
outcome for a clean condition read speech corpus is consis-
tent with other results reported for regularization of regression
based speaker adaptation on similar speech corpora collected
under controlled conditions [10, 12].

5. DISCUSSION AND CONCLUSION

Manifold learning has been applied as a regularization tech-
nique in the EM based algorithm for CMLLR parameter es-
timation. This was motivated for CMLLR in particular by
the observation that the ML based EM algorithm in general
does not necessarily preserve local relationships among fea-
ture vectors. Manifold regularization resulted in reduction in
ASR WER, especially for the telephone based Spanish Call
Home speech corpus.

This approach and the associated experimental study is
considered preliminary in that it raises a number of ques-
tions. First, the experimental study made use of only small
corpora for estimating the affinity matrices associated with
the manifold constraints. Future work will address the ques-
tion of whether semi-supervised learning scenarios involving
the use of very large available unlabeled speech corpora for
training affinity matrices will have a more substantial impact
ASR performance [16]. Second, the development in Section 3
did not consider the use of discriminative manifold learning
techniques as has been done for other applications involving
manifold constraints [21]. The impact of these techniques
will also be evaluated for the manifold regularization appli-
cation considered in this paper. Finally, The EM algorithm
for CMLLR parameter estimation is generally considered to
be reasonably well behaved [17]. Future work will investi-
gate the application of manifold based techniques to regular-
izing other less numerically stable EM based modeling for-
malisms like, for example, subspace Gaussian mixture model
(SGMM) parameter estimation and adaptation [22–27].
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