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Abstract

This work presents a novel approach to speech activity detec-

tion for highly degraded radio-frequency channel conditions.

In this approach, the audio stream is segmented into short ho-

mogeneous segments. Each segment is represented by shift-

invariant features. These features provide a coarse histogram-

based description of the high-energy trajectories in the time-

frequency domain. They are less sensitive to frequency shift-

ing compared to traditional filterbank-based features like Mel-

Frequency Cepstral Coefficients (MFCC) and Perceptual Linear

Prediction (PLP) coefficients. We evaluate our approach on the

speech activity detection task of the Robust Automatic Tran-

scription of Speech (RATS) program. Our experiments show

improvements up to 29% relative in the performance in terms

of total error on four radio-frequency channels used in RATS

compared to the PLP-based baseline system.

Index Terms: speech activity detection, segmental modeling,

invariant features

1. Introduction

Speech activity detection (SAD) is an important preprocessing

step for audio analytics. SAD in highly degraded conditions is

still a challenge for many applications [1, 2, 3, 4]. The chal-

lenge is even harder when the training data used to estimate the

parameters of the SAD models is mismatched with the testing

condition which is the focus of this work.

We address this problem in the context of the Robust Auto-

matic Transcription of Speech (RATS) program. The program

targets audio analytics in extremely noisy and highly distorted

radio-frequency channels [5]. One of the motivations of this

work is the observation that human annotators are very success-

ful in segmenting RATS audio to speech and non-speech re-

gions using the spectrogram. Spectrogram reading in this case

involves interpreting the acoustic patterns in the spectrogram to

determine simultaneously the boundaries between different seg-

ments and their labels as speech or non-speech. The basic idea

here is that pitch and formant trajectories exhibit patterns which

can be differentiated from the mostly random or even harmonic

structures in the non-speech regions. This motivates developing

a segment-based approach as an alternative to the conventional

frame-based approaches [1, 2, 6].

In this work, the audio stream is segmented into short seg-

ments by detecting the change points, these segments are rep-

resented using shift-invariant features inspired by the work on

shape detection in [7]. By employing a representation that is

shift-invariant in time, we can compensate for many inaccura-

cies in generating the segments. By employing a representation

that is shift-invariant in frequency, the representation may be

robust to some types of carrier mismatch between the transmit-

ter and the receiver and tonal variations in the RATS data [5].

Figure 1 shows the spectrogram of a speech segment before and

after transmission through one of the RATS channels. This ro-

bustness, as we will discuss later, comes at the expense of losing

some of the detailed filterbank-based frame-based information

employed in standard features like MFCC and PLP.

In the next section, we describe the task, the data, and the

baseline system. In Section 3, the shift-invariant segment-based

approach is introduced. The experiments performed to evalu-

ate the different techniques are described in Section 4. Finally,

Section 5 contains a discussion of the results.

2. Setup

In this section, we provide a brief description of the data used

in training and testing and the baseline system.

2.1. Data

This work is part of our efforts on the SAD task of the RATS

program. Both the training and the testing data in the RATS

program consist of audio recordings from a variety of exist-

ing data sources, transmitted through LDC’s multi radio-link

channel collection system with fixed transmitter and receiver

settings [5]. These recordings comprise simultaneous captures

from different transmitter/receiver combinations. These combi-

nations represent different kinds of modulation, carrier channel

bandwidth, receiver intermediate frequency (IF) bandwidth, and

range of carrier frequencies mostly in the high frequency (HF)

and the ultra high frequency (UHF) ranges. Sources of distor-

tion like sideband mistuning, multipath interference, and tonal

interference are very common. Table 1 shows the configuration

of the four RATS channels presented in this work [5]. The total

amount of training data used to train each of our systems is ap-

proximately 800 hours. The systems are evaluated on two test

sets: RATS dev1 and dev2 data sets. The dev1 test set consists

of approximately 1.5 hours per channel. The dev2 evaluation

data is approximately 2 hours per channel. The metrics used in

the RATS evaluation are both the false alarm rate and the miss-

ing probability. The results are presented here in terms of the

two metrics in addition to their average, the total error.

2.2. The Baseline system

The baseline system is a two-pass system which uses the initial

pass to adapt the parameters that are used in the final pass to

generate the final speech/non-speech segmentation [8], while

the proposed system is a single-pass system which processes the

input audio only once to generate the final speech/non-speech

segmentation.

In the baseline system, two speech and non-speech Gaus-
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Figure 1: An example of the frequency shifting effect of the RATS channel D.

Table 1: The configurations of the four RATS channels used in our experiments

Channel Transmitter Receiver Receiver IF BandwidthTransmission BandModulationChannel Bandwidth

B Icom ICF21GM AOR AR5001D 6KHz UHF NFM 6.25KHz

D Galaxy DX2547 Icom IC-R75 9KHz HF SSB 10KHz

E Icom IC-F70D Icom ICR8500 6KHz VHF NFM 11.25KHz

H Magnum 1012HT TenTec RX340 15KHz HF NFM 10KHz

sian mixture models (GMMs) are used for initial segmentation

and speech/non-speech labeling of the input recording [9]. The

speech and non-speech segments with high confidence are used

to MAP adapt the means of the Gaussian components of the

corresponding GMMs [10]. These adapted models are used in a

final pass to provide the final speech/non-speech segmentation

of the input recording [8].

3. The Shift-Invariant Segment-Based
Approach

In this section, we discuss the shift-invariant segment-based ap-

proach. First, the input audio is segmented into short segments

and then a representation of each of these segments is estimated.

An MLP model is trained using the segments of the training

data. In the following, we provide the details of each of these

steps.

3.1. Segmentation of the input audio

The main goal of this step is to create homogeneous segments

that contain only speech or non-speech regions but not both.

The algorithm uses several heuristics to detect a change point.

One of these heuristics is

TD[n, f ] = min
ρ∈N(f)

|x[n, f ] − x[n + 1, ρ]| , (1)

where N(f) is a small window in the frequency domain around

f , and x[n, f ] is the value of the logarithm of the magnitude

spectrum at frame n and frequency index f . Three other mea-

sures are used in our algorithm to detect segment boundaries.

The first estimates the minimum difference at the same frame

across a small window in the frequency domain around f ,

SD[n, f ] = min
ρ∈N(f)

|x[n, f ] − x[n, ρ]| . (2)

The second estimates the minimum difference with the previous

frame across a small window in the frequency domain around

f ,

PD[n, f ] = min
ρ∈N(f)

|x[n, f ] − x[n − 1, ρ]| . (3)

The third measure uses a window that spans six frames around

the current frame and is given by

LT [n, f ] =

n−1
X

m=n−3

x[m, f + (m − n)(f − v)]

−

n+3
X

m=n+1

x[m, f + (m − n)(f − v)], (4)

where

v = argmin
ρ∈N(f)

|x[n, f ] − x[n + 1, ρ]| .

The heuristic measurements described in Equations 1, 2, 3,

and 4 are used to generate three change indicators at each frame

as follows

TDI[n] = #(TD[n, f ] > Th1), (5)

where #(C[n, f ]) is a function that returns the number of

points in the time-frequency domain at which the condition

C[n, f ] is true, and Th1 is a threshold selected using a held-

out set. The second change indicator is

LTI[n] = #(LT [n, f ] > Th2), (6)

where Th2 is a threshold selected using a held-out set. The

third change indicator is

SPI[n] = #(SD[n, f ] + PD[n, f ] > 2TD[n, f ]).(7)

The three values in Equations 5, 6, and 7 are added together and

the sum is compared to a threshold, Th3, to determine if there

is a change point at frame n or not.

The threshold values are estimated on a held-out set of 50

10-minute files from the RATS SAD training data to minimize

a weighted sum of the missing probability and false alarm. To

achieve the goal of creating homogeneous segments and since

segments can be merged after detecting that they belong to the

same class, we selected an operating point at which the false

alarms are twice the missing errors. To avoid extremely large

number of segments, we have a limit on the minimum duration

of the segment equals 0.2 second. The values used for Th1,

Th2, and Th3 in our experiments are 3.9, 8.2, and 80 respec-

tively. These are kept constant across all experiments on differ-

ent channels.
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3.2. Estimation of the segmental representation

Each segment is represented in our algorithm by 100 points in

the time-frequency domain. We experimented with selecting

these points using several criteria. For example, we tested us-

ing an edge detector algorithm [11] to select these points as

described in [7]. However, our best results were achieved by

selecting the points corresponding to the highest log magnitude

spectrum values in the segment. Each point pi is represented by

a coarse histogram of the relative coordinates of the remaining

selected points as in [7]

hi(k) = # {q 6= pi : (q − pi) ∈ bin(k)} . (8)

We experimented with bins that are uniform in the log-polar

space, making the representation more sensitive to the close

sample points than to points farther away as in [7]. However,

the best results were achieved by using independent bins for

each dimension with the bins uniformly distributed.

3.3. The MLP-based segmental classifier

We use an MLP with one hidden layer as a classifier to deter-

mine the label of each segment. An MLP-based classifier was

used instead of the GMM used in the baseline system because

the features in this case have high correlations which violate the

diagonal covariance assumption. Also a full-covariance model

is not efficient because of the high dimensionality of the fea-

tures. For each segment, the input to the MLP is the concate-

nation of the representation of the selected 100 points. The or-

der of these points in the representation has a major effect on

the performance. We explored various approaches. This in-

cludes ordering the points based on time and then frequency

indices for points that are from the same frame, and ordering

the points based on frequency index and then based on time for

points that have the same frequency index. Also we tried re-

ordering the points to reduce a measure of the variance across

adjacent points. However, the best performance was achieved

by ordering the points based on frequency and then based on

time for points that have the same frequency index. The esti-

mation of the MLP parameters is performed using the Quicknet

toolkit [12] with the minimum cross entropy objective function.

4. Experiments

In this section, we describe the implementation of the different

features and the experiments performed to evaluate them.

4.1. Implementation

In both the baseline and shift-invariant segment-based systems,

the input audio is down sampled from 16 KHz to 8 KHz and

then windowed to frames of 32 ms duration with a shift of

10 ms. For the baseline system, thirteen PLP coefficients are

calculated for each frame. Cepstral mean normalization is

then applied per utterance. The PLP coefficients of 9-frames

around the current frame are spliced together and then projected

to a 40-dimensional vector using linear discriminant analysis

(LDA). Each GMM consists of 4042 diagonal-covariance Gaus-

sian components. The parameters of the two models are esti-

mated from the training data using maximum likelihood esti-

mation. For the shift-invariant segment-based system, the fast

Fourier transform (FFT) of size 256 is estimated. Only val-

ues in the range of 125 to 3800 Hz are used, as almost all of

the RATS channels did not have significant energy outside this

Table 2: Comparing the shift invariant and the scale and shift

invariant representations of the segment on the RATS dev1 test

set

Shift-Invariant Scale-and-Shift-Invariant

ChannelMiss (%) FA (%)Total (%) Miss (%) FA (%)Total (%)

B 4.1 8.7 6.4 4.0 8.4 6.2

D 3.4 5.7 4.5 3.7 5.9 4.8

E 3.4 9.9 6.6 4.0 9.8 6.9

H 5.5 5.1 5.3 5.9 5.6 5.7

range. This gives 118 values for each frame. After segment-

ing the utterance to short segments as discussed before, the 100

points in the time-frequency domain with the highest log magni-

tude spectrum values are selected to represent the segment. We

experimented with many configurations for representing these

points. We report here the two most successful representations:

1. The histogram representation: Each point is represented

by the histogram of the relative values of the remaining

points, as in Equation 8, along the dimensions of time,

frequency, and log magnitude spectrum. We used 4 bins

along each dimension. This gives 1200-dimensional rep-

resentation of each segment.

2. The mixed representation: Each point is represented by

the histogram of the relative values of the remaining

points along the dimensions of time and frequency, in ad-

dition to the zero-mean normalized log magnitude spec-

trum, the estimate of the time derivative, TD[n, f ], as
in Equation 1, and the average of TD[n, f ] at frame n

for all frequency indices f with log magnitude spectrum

values higher than the average value across the segment,
1

|F |

P

f∈F TD[n, f ], where F = {f : x[n, f ] > xavg}

and xavg is the average log magnitude spectrum across

the segment.

In both cases, the feature vector is used as an input to train an

MLP with one hidden layer. We experimented with three sizes

of the hidden layer: 500, 800, and 1200. The size of the output

layer is two nodes corresponding to the speech and the non-

speech labels. The posterior of the speech class generated by

the MLP is compared to a threshold to decide on which label

will be assigned to the segment. The threshold is estimated on a

held-out set of 50 10-minute files from the SAD RATS training

data to get an operating point close to the equal error rate (EER)

region. The value of the threshold in our experiments is 0.63.

4.2. Results

Our focus in this work is on evaluating the performance of the

two systems on data corresponding to a channel not used in the

training data. However, we first evaluate the segment-based sys-

tem with the testing channel included in training. In the first set

of experiments, we tested the effect of making the segment rep-

resentation scale invariant by dividing the values for each point

by the range of possible values over all the selected points of the

segment. We used the mixed representation with a hidden layer

of 800 nodes in these experiments. As shown in Table 2, the

results are mixed with small improvement on channel B from

scale invariance and slight degradation on channels D, E, and

H. In all the experiments reported in the rest of the paper, we

choose to use the shift invariant representation of the segment.

In Table 3, the performance of the shift-invariant segment-

based system with the mixed representation is compared for dif-

ferent sizes of the MLP hidden layer. The results show that

across most channels, significant gains are obtained by using
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Table 3: Comparing the proposed system with different sizes of the MLP hidden layer on the RATS dev1 test set

500 800 1200

Channel Miss (%) FA (%) Total (%) Miss (%) FA (%) Total (%) Miss (%) FA (%) Total (%)

B 4.3 8.8 6.5 4.1 8.7 6.4 4.1 8.6 6.3

D 5.2 5.6 5.4 3.4 5.7 4.5 3.4 5.7 4.5

E 4.9 9.8 7.3 3.4 9.9 6.6 3.5 9.2 6.3

H 5.7 5.9 5.8 5.5 5.1 5.3 5.8 5.3 5.5

Table 4: Comparing the histogram and the mixed representa-

tions of the segment on the RATS dev1 test set

Histogram Representation Mixed Representation

ChannelMiss (%) FA (%)Total (%) Miss (%) FA (%)Total (%)

B 3.9 7.9 5.9 4.1 8.7 6.4

D 3.9 6.2 5.0 3.4 5.7 4.5

E 4.2 9.8 7.0 3.4 9.9 6.6

H 6.2 6.3 6.2 5.5 5.1 5.3

Table 5: Comparing the proposed segment-based and the two-

pass baseline system on the RATS dev1 test set with matched

training

Proposed Baseline

ChannelMiss (%) FA (%)Total (%) Miss (%) FA (%)Total (%)

B 4.1 8.7 6.4 5.3 5.6 5.4

D 3.4 5.7 4.5 2.0 6.6 4.3

E 3.4 9.9 6.6 2.9 9.0 5.9

H 5.5 5.1 5.3 3.0 5.4 4.2

800 hidden nodes instead of 500. Comparing the results of us-

ing 800 hidden nodes and 1200 hidden nodes shows that the

results are not consistent across channels. We report results us-

ing the 800 hidden node system in the rest of the paper.

In Table 4, we compare the histogram and the mixed rep-

resentations. As shown in Table 4, using explicit magnitude-

spectrum-related values as in the mixed configuration improves

the performance on channels D, E, and H, but slightly degrades

the performance on channel B. All the results reported in the

rest of the paper are based on the mixed representation.

The performance of the single-pass segment-based system

is compared to the two-pass frame-based MAP-adaption base-

line system in Table 5. The results indicate that when the sys-

tem is trained on the testing channel in addition to the other

channels, the baseline two-pass MAP-adaption system outper-

forms the proposed shift-invariant segment-based system by 4%

to 26% relative. However, this improvement is gained at the

expense of approximately three times slower detection as the

baseline system has larger models and uses two-pass decoding

to generate the final segmentation.

In Table 6, the comparison of the results of the proposed

shift-invariant segment-based system and the two-pass frame-

based MAP-adaptation baseline system on the dev1 test set

show that the proposed system consistently outperforms the

two-pass baseline system across the four channels, when the

test channel is not included in the training data. The gain in the

performance from using the proposed shift-invariant segment-

based system compared to the baseline system ranges between

9% to 29% relative in terms of total error. This may indicate

that the features used in the proposed system are more robust to

frequency shifting and limited tonal variations in these channels

than the traditional PLP coefficients in the baseline system.

Finally, we compare the results of the proposed shift-

Table 6: Comparing the proposed segment-based and the two-

pass baseline system on the RATS dev1 test set with mis-

matched training

Proposed Baseline

ChannelMiss (%) FA (%)Total (%) Miss (%) FA (%)Total (%)

B 5.5 10.6 8.0 9.2 10.9 10.0

D 5.2 5.2 5.2 4.9 9.7 7.3

E 9.2 8.9 9.0 9.1 10.7 9.9

H 5.5 7.9 6.7 5.9 9.6 7.7

Table 7: Comparing the proposed segment-based and the two-

pass baseline system on the RATS dev2 test set with mis-

matched training

Proposed Baseline

ChannelMiss (%) FA (%)Total (%) Miss (%) FA (%)Total (%)

B 7.4 9.6 8.5 8.7 12.8 10.7

D 5.7 6.1 5.9 6.5 9.8 8.1

E 6.1 5.3 5.7 5.5 7.3 6.4

H 4.9 7.7 6.3 5.1 9.5 7.3

invariant segment-based system and the two-pass baseline sys-

tem on the dev2 test set across the four channels when the test

channel is not included in the training data in Table 7. The

gain in the performance from using the proposed shift-invariant

segment-based system compared to the two-pass baseline sys-

tem ranges between 11% to 28% relative in terms of total error

which is consistent with the results on the dev1 test set.

5. Discussion

In this paper, we examined a novel approach to automatic detec-

tion of speech in noisy radio channels. This approach involves

segmenting the audio into short segments and then representing

each segment with shift-invariant features. Consistent improve-

ments across the four channels on both the RATS dev1 and dev2

test sets are achieved compared to the baseline system, when the

data of the testing channel is not used in training.

In the proposed system, filters with fixed center frequency

and bandwidth which are used in traditional speech processing

frontends like PLP and MFCC are avoided. This makes the

features less sensitive to frequency shifting and tonal variations

typically encountered in radio-frequency channels. This may

explain the better generalization in the mismatched condition at

the expense of a degradation in the performance when the test-

ing channel is used in training in the matched condition setup.
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