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ABSTRACT

Based on our recently-proposed frequency-warping scheme

using subglottal resonances (SGRs), this paper addresses two well-

known limitations of conventional vocal-tract length normalization

(VTLN): (1) its sub-optimal nature owing to the lack of frequency-

dependent scaling, and (2) sensitivity to noise. Based on the idea

of filter-bank interpolation, a novel approach is proposed to real-

ize the combined effect of VTLN and SGR-based warping (which

provides frequency-dependent scaling). Using the Wall Street Jour-

nal database and the conventional MFCC front end, SGR warping

is shown to be complementary to VTLN in performance. Since

SGR warping depends more on the given signal and less on models

trained a priori, we argue that SGR warping is less sensitive to noise

than VTLN. Through experiments on the AURORA-4 database with

power-normalized cepstral coefficients as noise-robust front-end

features, we show that SGR warping is better than VTLN, in clean

as well as multi-conditional training.

Index Terms— subglottal resonances, joint frequency warping,

noise robustness, VTLN, speaker normalization

1. INTRODUCTION

The conventional form of vocal-tract length normalization (VTLN)

uses a piece-wise linear warping function [1,2], and is quite effective

as an unsupervised, utterance-level speaker normalization scheme

for automatic speech recognition (ASR) using hidden Markov mod-

els (HMMs). However, it is well known that VTLN is not optimal

and is sensitive to noise, especially when the training data are clean.

This paper addresses these limitations of VTLN using our recently-

proposed frequency-warping scheme [3], which is based on the use

of subglottal resonances (SGRs).

A few studies have proposed non-linear and/or multi-parameter

warping schemes that are better than conventional VTLN for small-

vocabulary ASR tasks or children’s ASR [4–7]. For medium- and

large-vocabulary ASR tasks, non-linear warping has been found

to provide negligible improvement over conventional VTLN [8, 9].

Here, we investigate the combined effect of VTLN and SGR-based

warping, and show, using a medium-vocabulary ASR task, that the

proposed joint-warping approach provides a significant improve-

ment over VTLN. Our approach is also novel in the way we use

filter-bank interpolation (proposed in [2]) to implement VTLN+SGR

warping. The Wall Street Journal (WSJ) database and the MFCC

front end are used for this part of our study.

As shown in [10], VTLN is sensitive to noise unless a statistical

feature enhancement method such as histogram equalization [11] or

vector Taylor series compensation [12] is used. However, such meth-

ods are resource intensive and may not be well suited to real-time
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Fig. 1: VTLN (blue) versus SGR warping (red). Fn, α, {Sg1r ,
Sg2r, Sg3r} and {Sg1t, Sg2t, Sg3t} denote Nyquist frequency,

VTLN warping factor, reference and target SGRs, respectively.

processing. In this paper, we show (without using statistical feature

enhancement) that the SGR-based approach of [3] is inherently noise

robust. In addition, we show that even a fast version of our approach

is effective, while being computationally less expensive than VTLN.

This part of our study uses the AURORA-4 database with power-

normalized cepstral coefficient (PNCC) features [13] (which offer a

better baseline than MFCCs in noise).

It is important to note that this paper does not demonstrate the

efficacy of VTLN+SGRwarping in noise, partly because the estima-

tion of the VTLN warping factor (in noise) tends to be error prone.

Next, we present a brief comparison of VTLN and SGR warping in

order to motivate the ideas proposed in this study.

2. VTLN VERSUS SGR WARPING

Based on the well-known inverse relationship between formant fre-

quencies and vocal-tract length, VTLN uses a piece-wise linear func-

tion with slope α in the frequency range of interest (blue line in

Fig. 1). This means that VTLN scales all the spectral components

(and formants) by the same amount. On the other hand, SGR warp-

ing (red line in Fig. 1) uses a piece-wise linear function to map the

first three SGRs – Sg1, Sg2 and Sg3 – of a target speaker (subscript
t) to the first three SGRs of a reference speaker (subscript r). Since
Sg2 and Sg3 are not necessarily integer multiples of Sg1 [14], SGR
warping results in frequency-dependent scaling. As Fant’s studies

on vowel normalization have shown [15], speaker variability can be

best minimized using a combination of frequency-independent and

frequency-dependent scaling. Therefore, we hypothesize that a com-

bination of VTLN and SGR warping might yield better results than

either approach alone (Section 3).

Given a test utterance, VTLN α is typically estimated using a

maximum-likelihood (ML) grid search:

ᾱ = argmax
α∈Gα

P (Xα|λ,W), (1)
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where Xα, ᾱ, Gα, λ and W denote the α-warped feature vectors,

the optimal α value, the search grid, the set of pre-trained HMMs,

and the first-pass transcription corresponding to unwarped features,

respectively. In SGR warping on the other hand, the reference SGRs

are determined a priori (using a database of accelerometer record-

ings of subglottal acoustics), while the target SGRs are estimated

from the given utterance in two steps. First, initial estimates (Sg1it,
Sg2it, Sg3

i
t) are obtained using our SGR estimation algorithm [16].

Then, refined estimates ( ¯Sg1t, ¯Sg2t and ¯Sg3t) are obtained by ap-

plying corrections as per Eq. (2):

¯SgMt = ¯kM × SgM i
t M ∈ {1, 2, 3}, (2)

where {k̄1, k̄2, k̄3} denotes the set of optimal correction factors, de-

termined using an ML grid search:

{k̄1, k̄2, k̄3} = argmax
{k1,k2,k3}∈ Gk

P (X {k1,k2,k3}|λ,W). (3)

In Eq. (3), Gk denotes the 3-dimensional search grid for the correc-

tion factors, and X {k1,k2,k3} denotes feature vectors corresponding

to the parameters {k1×Sg1it, k2×Sg2it, k3×Sg3it}. While VTLN

relies entirely on λ to estimate the best α, the ML grid search in

Eq. (3) is preceded by an initialization step that is independent of

λ. Hence, if the initial estimates of the target SGRs are noise robust,

we can expect SGR warping to be less sensitive to noise than VTLN,

especially in mismatched conditions (Section 4).

3. COMBINING VTLN AND SGR WARPING

3.1. Methods

We use the conventional MFCC front end to describe our method

of combining SGR warping with VTLN. Given a speech frame with

power spectrum P, the static MFCC feature vector C is obtained

as per Eq. (4): filtering the power spectrum with a Mel filter bank

F, compressing the filter-bank outputs using the log() function, and
decorrelating them using D, the discrete cosine transform (DCT). L

in Eq. (4) denotes the log filter-bank output.

C = D[L] = D[log(F ·P)] (4)

VTLN is typically implemented by warping the center frequen-

cies of F by α – which results in the warped filter bank F
α – while

leaving P unchanged, as shown in Eq. (5). This approach is more

efficient than resampling P.

C
α = D[Lα] = D[log(Fα ·P)] (5)

We implement SGR warping in the same way as VTLN, except

thatF is warped using SGR parameters. Assuming that the reference

SGRs and the initial estimates of target SGRs are available, SGR

warping is parameterized by the triplet {k1, k2, k3} (cf. Eqs. (2) and
(3)), which will henceforth be denoted by K for simplicity. SGR

warping with FK can be written mathematically using Eq. (6).

C
K = D[LK] = D[log(FK ·P)] (6)

To combine SGRwarping with VTLN (by applying VTLN first),

we need a way to estimate the jointly-warped log filter-bank output

L
α,K from the VTLN-warped log filter-bank output Lα. This is

because once VTLN-warping is applied, we have access to L
α, but

not the power spectrum P. To estimate Lα,K from L
α, we use the

idea of filter-bank interpolation [2].

The authors of [2] proposed filter-bank interpolation for the pur-

pose of estimating Lα from L (the unwarped log filter-bank output).
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Fig. 2: Log filter-bank outputs for a sample voiced speech frame

from the WSJ database. While VTLN scales all frequencies uni-

formly, VTLN+SGR warping provides frequency-dependent scaling

(more scaling at low and mid frequencies than at high frequencies).

They showed that an interpolation matrix T
α can be designed such

that a linearly-transformed version of L (i.e., Tα · L) becomes a

good approximation of Lα. The same approach is used here, but to

approximate Lα,K as a linear transform of Lα. Equation (7) shows

how an interpolation matrix T
K can be used to obtain the jointly-

warped MFCC vector Cα,K.

C
α,K = D[Lα,K] = D[TK · Lα] = D[TK · log(Fα ·P)] (7)

T
K is parameterized by the SGR correction factors K, and its

(j, i)th entry (0 ≤ i, j ≤ N − 1) is given by Eq. (8) [2]:

T
K
j,i =

bi
N − 1

N−1
∑

m=0

2am cos

(

πνK
j m

νs

)

cos

(

πνim

νs

)

, (8)

whereN is the number ofMel filter-bank channels, νs is the Nyquist
frequency in theMel domain, {νi}

N−1

i=0
and {νK

j }N−1

j=0
are the center

frequencies of the Mel filter bank before and after SGR warping,

respectively, and {ak}
N−1

k=0
and {bk}

N−1

k=0
are as below.

ak, bk =

{

0.5 k = 0, N − 1
1 k = 1, 2, . . . , N − 2

(9)

Details regarding the derivation of filter-bank interpolation ma-

trices can be found in [2]. To illustrate the combined effect of VTLN

and SGRwarping, Fig. 2 shows the log filter-bank outputs for a sam-

ple voiced speech frame from the WSJ database.

We use a two-step procedure to determine the optimal parame-

ters for VTLN+SGR warping. (i) Obtain ᾱ using Eq. (1). (ii) Using

ᾱ, estimate the optimal SGR warping parameters K̄ as:

K̄ = argmax
K∈Gk

P (X ᾱ,K|λ,W), (10)

where X ᾱ,K denotes the feature vectors obtained by jointly warping

with ᾱ and K, as per Eq. (7). X ᾱ,K̄ is the final feature vector se-

quence that is used for recognition. Note that Eqs. (3) and (10) are

different although they both estimate the optimal K – the former is

for SGR warping while the latter is for VTLN+SGR warping.

3.2. Evaluation

3.2.1. Experimental setup

The WSJ database (comprising clean speech recordings) is used to

study the combined effect of VTLN and SGR warping. All utter-

ances are down sampled to 8 kHz, divided into 25 ms frames at

10 ms intervals, and parameterized using the first 13 MFCCs and

their first- and second-order derivatives. Cepstral mean normaliza-

tion (CMN) is applied on a per-utterance basis. The WSJ0-SI84 data
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set (43 males, 40 females) is used for training, and the WSJ Novem-

ber 1992 test data set (5 males, 3 females) is used for evaluation.

The recognizer is composed of cross-word triphone HMMs (3 emit-

ting states with 8 Gaussian components each) and the standard WSJ

bigram language model (5000 words, closed vocabulary).

The VTLN search grid Gα consists of 21 points: from 0.80 to

1.20 in steps of 0.02. For SGR warping, the initial estimates of

the target SGRs are allowed corrections of up to ±5%: {ki}
3

i=1 ∈
{0.95, 1.00, 1.05}. Therefore, the search grid Gk consists of 27

points. The a priori reference SGRs are: Sg1 = 601 Hz, Sg2 = 1419

Hz, Sg3 = 2304 Hz (see [3] for an explanation of how these numbers

are obtained from an independent database of subglottal acoustics).

3.2.2. Speaker normalization results

Table 1 shows the word error rates (WERs) obtained by applying

VTLN and SGRwarping individually, and in combination. As found

in [3], SGR warping by itself does slightly better than VTLN. The

more interesting observation, however, is that the WER reductions

provided by VTLN (8.7%) and SGR warping (13.0%) are almost

additive, as realized by the proposed joint-warping approach. This

shows that SGR warping is complementary to VTLN – while the

former provides frequency-dependent scaling, the latter accounts for

the vocal-tract length variation across speakers. Also, VTLN+SGR

warping has the same order of complexity as VTLN or SGR warp-

ing, since it estimatesK based on the optimal α rather than doing an

exhaustive search for the optimal {α,K} pair.

Algorithm WER (%) Rel. redn. (%)

Baseline (MFCC + CMN) 9.2 -

BL + VTLN 8.4 8.7

BL + SGR warping 8.0 13.0

BL + VTLN + SGR warping 7.4 19.6

Table 1: WERs (%) for the WSJ database (BL stands for baseline).

SGR warping is complementary to VTLN – WER reductions are

almost additive. Also, relative to VTLN, VTLN+SGR warping pro-

vides a statistically-significant WER reduction (p < 0.05).

4. SGRWARPING IN ADDITIVE NOISE

In [16], we proposed an algorithm to estimate SGRs from speech

signals in quiet. We showed in [3] that the algorithm can be used for

SGR warping in clean conditions. This section shows that our SGR

estimation algorithm is inherently noise robust so that it can be used

without any modification for speaker normalization in noise.

4.1. Noise robustness of the SGR estimation algorithm in [16]

For the purposes of this paper, it suffices to know that the algorithm

in [16] depends on 5 speech parameters: F0, F3, fb(F1), fb(F2)
and fb(F3), where F0 is the fundamental frequency, F1, F2 and

F3 are the first three formant frequencies, and fb() is a function for

Hertz-to-Bark transformation (note that only voiced segments are

used for SGR estimation). Further details can be found in [16].

To obtain F0 and formant values, our algorithm uses the Snack

toolkit [17]. In [16], we showed that Snack is sufficiently accurate

for SGR estimation in quiet environments. Here, we evaluate the per-

formance of Snack in noise and show that it is reasonably accurate

for the purpose of noise-robust SGR estimation as well. Since SGR

estimation happens at the utterance level and not at the frame level

(SGRs of a given speaker are almost time invariant [16]), it does not

demand very accurate F0 and formant tracking.

4.1.1. Evaluating the efficacy of Snack in noise

To evaluate the accuracy of F0 and formant tracking in noise using

Snack, a noisy data set is created using 280 speech files from MIT’s

tracheal resonance database (TRD). The database comprises simul-

taneous microphone and accelerometer recordings of utterances of

the form “<target word>, say<target word> again,” from 14 adult

speakers of American English (this database was used in [16] for

SGR estimation in quiet). Babble noise, which is more realistic than

white noise, is added to each file using the Filtering and Noise-

adding Tool (FaNT) [18], at a signal-to-noise ratio (SNR) of 0 dB.

The noise file is taken from the NOISEX-92 corpus [19].

Using Snack, F0, F1, F2 and F3 are obtained frame-by-frame

(at intervals of 5 ms) for all the speech files in the clean and noisy

data sets. Snack also provided the voicing decision for each frame.

Treating the clean-speech estimates as ‘ground truths’, we compute

the percentage RMS error (RMSE) for the 5 parameters that are used

for SGR estimation: F0, F3, fb(F1), fb(F2) and fb(F3). The
percentage RMSE, Rx, for a given parameter, x, is computed as:

Rx =

√

(
∑Nvv

j=1
(xj

c − xj
n)2)/Nvv

(
∑Nvv

j=1
xj
c)/Nvv

× 100, (11)

whereNvv denotes the total number of frames (indexed by j) that are
declared as voiced in both clean and noisy conditions, and the sub-

scripts c and n denote ‘clean’ and ‘noisy’, respectively. The over-

all unvoiced-to-voiced error (frames declared as unvoiced in clean

but voiced in noise) is very small (3.7%); this is good for SGR

estimation because unvoiced segments are discarded by our algo-

rithm. Voiced-to-unvoiced errors are harmless as long as at least a

few voiced frames are correctly detected.

Table 2 shows the value ofRx for the five parameters mentioned

above. The observed errors are acceptable for SGR estimation, espe-

cially considering that our analysis is performed at 0 dB SNR. The

relatively low errors for F3 and fb(F3) can be attributed to the fact
that babble noise has most of its energy in the low frequencies.

Parameter (x) F0 F3 fb(F1) fb(F2) fb(F3)
Rx 17.4 7.6 16.5 10.2 3.7

Table 2: Percentage RMSEs (Rx – see Eq. (11)) for the five pa-

rameters involved in SGR estimation (speech files from the tracheal

resonance database, corrupted with babble noise at 0 dB SNR).

4.1.2. Accuracy of SGR estimation in noise

The test set is identical to the one used in Sec. 4.1.1 (i.e., 280 speech

files from TRD) except that the speech files are corrupted with four

different noise types (babble, white, factory and pink – all from

NOISEX-92) at SNRs of 0, 5 and 10 dB. ‘Ground truth’ SGRs are

obtained from the accelerometer files in TRD, and RMSE (in Hz) is

used as the performance metric. For brevity, Table 3 shows results

only for the case of babble noise; results for the other noise types are

either similar or slightly better. Clearly, our algorithm is quite robust

in estimating all three SGRs, even in low-SNR conditions.

Clean 10 dB 5 dB 0 dB Average

Sg1 28 30 31 34 31

Sg2 63 64 63 67 64

Sg3 113 116 114 119 116

Table 3: RMSEs (in Hz) for SGR estimation in babble noise at dif-

ferent SNRs (speech files from the tracheal resonance database).
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Algorithm Clean Babble Car Street Airport Restaurant Train Average

Training with clean speech

Baseline (PNCC + CMN) 12.9 39.8 18.3 42.4 37.1 42.6 42.9 33.7

BL + VTLN 11.1 40.4 17.4 43.5 37.9 42.5 43.6 33.8

BL + VTLN (oracle) 11.1 37.6 16.4 39.4 33.8 39.6 41.3 31.3

BL + SGR warping – fast 11.1 37.4† 16.9 39.3† 34.2† 39.5† 41.3† 31.4

BL + SGR warping 11.0 37.1† 15.5† 39.0† 33.7† 38.7† 40.8† 30.8

BL + SGR warping (oracle) 11.0 36.6 15.5 38.2 33.6 37.9 40.2 30.4

Training with clean and noisy speech

Baseline (PNCC + CMN) 12.7 35.0 18.3 37.4 34.2 38.6 39.5 30.8

BL + VTLN 11.3 35.3 16.4 38.7 33.6 39.6 40.2 30.7

BL + SGR warping – fast 11.5 32.6† 16.6 35.5† 32.0† 35.6† 37.3† 28.7

BL + SGR warping 10.9 33.3† 15.4† 35.7† 31.3† 35.4† 37.7† 28.5

Table 4: WERs (%) for VTLN and SGRwarping, averaged over all SNRs (5–15 dB), in clean and additive-noise conditions for the AURORA-

4 database. For SGR warping, “fast” indicates that the ML grid search of Eq. (3) is omitted. The oracle results are obtained by warping noisy

speech with parameters estimated from clean data. BL stands for baseline; bold face indicates the best non-oracle result; and † indicates a

statistically-significant WER reduction relative to VTLN (p < 0.05).

4.2. Evaluation

4.2.1. Experimental setup

The narrowband set (sampled at 8 kHz) of the AURORA-4 database

[20], which is based on the WSJ0-SI84 data set, is used for all ex-

periments. Only the additive-noise condition (6 different noise types

with SNRs ranging between 5 and 15 dB) is considered. Two sets of

HMMs are trained: one using clean speech only, and the other us-

ing both clean and noisy speech. The first 13 PNCCs and their first-

and second-order derivatives, with CMN, are used as features. The

recognition setup is the same as in Sec. 3.2.1.

4.2.2. Speaker normalization results

Table 4 shows the WERs for VTLN and SGR warping. The baseline

WER for clean training is 33.7%, on average, which is significantly

lower than the average WER given by MFCCs (42.1%). For SGR

warping, “fast” indicates that the ML grid search of Eq. (3) is omitted

– which is more efficient than VTLN and well suited to real-time

implementation. The oracle results are obtained by warping noisy

speech using parameters estimated from clean data.

• In both training conditions, VTLN provides little improvement

over the baseline. The reason is that the estimation of VTLN α tends

to be poor when training and testing data are mismatched. This is

further evident from the oracle results – VTLN does produce the

desired effect when the warping factors are estimated reliably (i.e.,

from clean data). In contrast, SGR warping is less sensitive to noise

because it starts with robust SGR estimates before finding the opti-

mal value of K. This is further evident from the fact that the actual

and oracle results are comparable.

• Except for car noise (which is fairly stationary), the actual

SGR-warping results are slightly worse than the oracle results (al-

though comparable, on average). This is because in severe noise con-

ditions, ML estimation of K has the same drawback as α estimation

(despite being less sensitive to noise owing to robust initialization).

In addition, our search grid Gk allows corrections of up to ±5%,

which may not be sufficient considering that our SGR estimation al-

gorithm can incur errors on the order of ±10% [3]. We limit the

corrections to±5% so that SGR warping (27-point grid) and VTLN

(21-point grid) have comparable complexities.

• SGR warping with K estimation could sometimes be worse

than the fast version (see results for multi-conditional training). This

can happen if the ML estimates ofK and the target SGRs (which are

model dependent) turn out to be worse than the initial SGR estimates

(which are purely signal dependent, and robust – cf. Table 3).

• We also experimented with mean-and-variance normalized

(MVN) PNCCs and clean-speech HMMs. On average, VTLN pro-

vided a 2% absolute improvement over the baseline (MVN-PNCC) –

28.6% versus 30.7% WER, but SGR warping was better than VTLN

by 1% absolute (27.6% WER, providing a 3% improvement over

the baseline as in the case of CMN-PNCC). Also, the fast version

of SGR warping provided the same performance as VTLN (28.7%

WER). Since VTLN is seen to be effective only after variance nor-

malization, these results show that SGR warping is less sensitive to

the feature normalization scheme used (CMN or MVN).

5. WOULD JOINT WARPING BE EFFECTIVE IN NOISE?

The first part of this paper showed that SGR warping is complemen-

tary to VTLN, in clean conditions, using a joint-warping scheme.

Since the joint-warping scheme requires a reliable estimate of the

VTLN warping factor, it may not be as effective in the presence of

noise. To verify if this is actually the case, we experimented with

the joint-warping approach, in noise, using an MFCC front end and

clean-speech HMMs. The results are not shown here, but we found

that VTLN+SGR warping was poorer than either method applied

individually. By using feature-compensation techniques such as his-

togram equalization, it might be possible to realize the benefit of

VTLN+SGR warping in the presence of noise.

6. CONCLUSION

Using the idea of filter-bank interpolation with the conventional

MFCC front end [2], a novel approach is developed to realize the

combined effect of VTLN and SGR-based frequency warping, thus

incorporating both frequency-independent and frequency-dependent

scaling into the normalization process. Results on the WSJ database

show that SGR warping and VTLN are complementary. The pro-

posed joint-warping scheme has the same order of complexity as

VTLN or SGR warping, and hence can be used in practice.

Our SGR estimation algorithm [16] is found to be robust to dif-

ferent noise types, even at an SNR of 0 dB. ASR experiments on the

AURORA-4 database (in clean as well as multi-conditional training)

using a PNCC front end show that SGR warping is less sensitive to

noise than VTLN. Even a fast version of SGR warping, which is less

complex than VTLN owing to the absence of a grid search, is found

to be effective, making it well suited to real-time implementation.
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