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Estimating Speaker Height and Subglottal

Resonances Using MFCCs and GMMs
Harish Arsikere, Student Member, IEEE, Steven M. Lulich, Member, IEEE and Abeer Alwan, Fellow, IEEE

Abstract—This letter investigates the use of MFCCs and
GMMs for: (1) improving the state of the art in speaker height
estimation, and (2) rapid estimation of subglottal resonances
(SGRs) without relying on formant and pitch tracking (unlike
our previous algorithm in [1]). The proposed system comprises
a set of height-dependent GMMs modeling static and dynamic
MFCC features, where each GMM is associated with a height
value. Furthermore, since SGRs and height are correlated, each
GMM is also associated with a set of SGR values (known a
priori). Given a speech sample, speaker height and SGRs are
estimated as weighted combinations of the values corresponding
to the N most-likely GMMs. We assess the importance of using
dynamic MFCC features and the weighted decision rule, and
demonstrate the efficacy of our approach via experiments on
height estimation (using TIMIT) and SGR estimation (using the
Tracheal Resonance database [15]).

Index Terms—speaker height, subglottal resonances, MFCCs,
GMMs, rapid estimation

I. INTRODUCTION

Speaker height is known to have strong negative correlations

(on the order of -0.8) with subglottal resonances (SGRs)

[1]. Therefore, this letter treats height estimation and SGR

estimation as related problems and proposes a novel frame-

work to solve them simultaneously. In contrast, our previous

approach [1] estimates height using SGR estimates. We show

experimentally that the proposed approach: (1) improves the

state of the art in height estimation, and (2) provides accurate

and rapid SGR estimates.

A. Height Estimation

Estimating the height of an unknown speaker from his/her

speech sample is a challenging task. This is because traditional

speech parameters such as the fundamental frequency (F0),

formant frequencies and Mel-frequency cepstral coefficients

(MFCCs) correlate only weakly with height [2]–[4]. Therefore,

reliable height estimation requires sophisticated learning algo-

rithms [5] and/or a knowledge of height-related physiological

parameters that can be determined from speech [1].

In [5], SVM-based regression is used to estimate height

from a 50-dimensional feature vector consisting mostly of

the means, standard deviations, percentiles and quartiles of

MFCCs, F0 and voicing probability. On the other hand, the

algorithm in [1] estimates height (hest) using Eq. (1):

hest = αK × SgKest + βK , (1)
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where SgKest is the K th SGR (K = 1, 2 or 3) estimated

from speech, and αK and βK are model parameters that are

determined from ‘ground truth’ measurements of SGRs (ob-

tained from accelerometer recordings of subglottal acoustics)

and height. The algorithms in [5] and [1] are known to be

equally accurate on the TIMIT database (yielding an RMS

error of 6.8 cm), but the SGR-based method is more efficient

because it requires only one feature.

Despite its acceptable error performance, the SGR-based

method, as observed in [1], yields a poor within-gender

correlation (∼0.2) between actual height and estimated height.

This is partly because the method relies on speech-based

estimates of SGRs that are often prone to error (see Sec. 5.1

of [1] for a detailed argument). The first goal of this study is

to improve the state of the art in height estimation, especially

with regard to the within-gender correlation between actual

height and estimated height.

The approach we propose here is inspired by the work of

Pellom and Hansen [6], whose algorithm relies on a set of

height-dependent Gaussian mixture models (GMMs) modeling

MFCC distributions. This study re-evaluates (for comparison

purposes) the approach of [6] because it uses the entire TIMIT

database for training as well as evaluation. Despite the fact

that MFCCs correlate only moderately with speaker height

[4], we demonstrate their effectiveness for height estimation

via a careful selection of features and decision rules.

In [6], the TIMIT database (containing 630 speakers with

known heights) was partitioned into 11 height groups and

each group was modeled using a 128-component GMM. The

GMMs were trained using 19 MFCCs (c1 to c19) computed

every 10 ms during voiced speech activity. Each GMM was

assigned an average height value based on the data used

for training it, and the estimated height for a given speech

sample was taken to be the value associated with the most-

likely GMM. The maximum-likelihood (ML) decision rule of

[6] is probably not optimal because MFCCs correlate only

moderately with height. We show that better performance

can be achieved by incorporating more than one GMM in

the decision-making process. In addition, we show that it is

important to use both static and dynamic MFCC features (note

that [6] uses only static features).

B. SGR Estimation

SGRs are useful not only for estimating height, but also for

speaker normalization in automatic speech recognition (ASR)

[7]. Our previous SGR estimation algorithm (proposed in [1])

is based on certain well-established phonological relations

between SGRs and formant frequencies [8]–[10], and is known

to be reasonably accurate (yielding RMS errors of less than
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Fig. 1. The proposed system for estimating speaker height and SGRs using

MFCCs and GMMs. Each GMM λ(j), j ∈ {1, 2, . . . ,M}, is associated with

an average height, h(j), and a set of average SGRs, SgK(j), K ∈ {1, 2, 3}.

5%) in estimating the first three SGRs. However, owing to its

dependence on automatic formant and pitch tracking (which

incurs delays and computational overhead), it is not well suited

to real-time applications. Therefore, the second goal of this

study is to design a rapid SGR estimation algorithm. We show

that the proposed MFCC-GMM approach can estimate SGRs

efficiently by exploiting their correlation with height.

II. THE PROPOSED APPROACH

The proposed system comprises a set of GMMs

{λ(1), . . . , λ(M)} (corresponding to M different height

groups) that are trained on a subset of the TIMIT database.

The GMMs are associated with two sets of numbers: aver-

age ‘ground truth’ heights {h(1), . . . , h(M)} obtained from

the TIMIT database, and average ‘ground truth’ SGRs

{SgK(1), . . . , SgK(M)} (K = 1, 2, 3) obtained from the

WashU-UCLA corpus [11]. Since SGRs are known to correlate

strongly with height [1], the association of average SGRs with

GMMs {λ(1), . . . , λ(M)} is well motivated. Given a speech

signal, speaker height and SGRs are estimated as follows.

1: Extract MFCCs from the given speech signal.

2: Detect voiced frames (T in number) and form a sequence

of feature vectors: O = {O1, O2, . . . , OT }.

3: Compute the log-likelihoods of O (normalized by T ) with

respect to GMMs {λ(1), . . . , λ(M)}:

ℓ(j) =
1

T

T
∑

t=1

logP (Ot|λ
(j)), j ∈ {1, . . . ,M}. (2)

4: Pick GMMs corresponding to the N highest likelihoods:

{i1, i2, . . . , iN} = argN-highest
j ∈{1,2,...,M}

ℓ(j). (3)

5: Estimate speaker height and SGRs using Eq. (4):

hest =

N
∑

n=1

wnh
(in); SgKest =

N
∑

n=1

wnSgK
(in), (4)

where {w1, . . . , wN} are weights that sum to 1.

Figure 1 depicts the proposed MFCC-GMM system. Based

on the above description, the salient features of the proposed

approach can be summarized as follows:

• Speaker height and SGRs are estimated simultaneously.

• Unlike the ML approach of [6], height is estimated using

the N most-likely GMMs; this is expected to compensate

for the lack of a strong correlation between MFCCs

and height. In addition, the height estimates have better

resolution:
(

M

N

)

×N ! possible outputs (N-highest method)

versus M possible outputs (ML method).

• SGRs can be estimated rapidly without relying on for-

mant and pitch tracking algorithms (unlike in [1]). There-

fore, SGR-based speaker normalization (for ASR) [7]

can be implemented efficiently using the same MFCC

features for SGR estimation as well as recognition.

III. SYSTEM IMPLEMENTATION

This section provides the details of our implementation with

regard to: (a) training data, (b) feature extraction, (c) acoustic

modeling (using GMMs), and (d) decision rule.

A. Training Data

The system is trained using the TIMIT database and the

WashU-UCLA corpus. Speech data from 317 (out of 630)

TIMIT speakers (93 female, 224 male) are used for acoustic

modeling. As shown in columns 1 and 2 of Table I, 10 height

groups (M = 10) are created such that each of them, except

groups 1 and 10, spans a height range of 5 cm. Each height

group is associated with an average height value (column 5)

that is used in the estimation process. It is clear from column 3

that the database has only a few speakers towards the extremes

(i.e., for height < 160 cm and > 190 cm). Although this is

somewhat undesirable, we use the TIMIT database to enable

comparisons with the state of the art.

The WashU-UCLA corpus contains SGR measurements

(obtained from accelerometer recordings) and height infor-

mation for 50 adult speakers (25 female, 25 male). SGRs

corresponding to speakers in each height group (of column

1) are averaged to obtain the numbers shown in columns 6–

8. As expected, the average SGRs decrease with an increase

in average height; the anomalous behavior of group 10 is

presumably due to its small sample size (only 4 speakers).

TABLE I
TRAINING PARAMETERS FOR THE PROPOSED APPROACH: HEIGHT RANGE;
NUMBER OF SPEAKERS AND MIXTURES; AND THE AVERAGE HEIGHT AND

SGRS FOR EACH OF THE 10 HEIGHT GROUPS (TIMIT DATABASE).

Grp. Height # # Avg. Ht. Avg. SGRs (Hz)
# Range (cm) Spkr. Mix. (cm) Sg1 Sg2 Sg3

1 [145, 155) 6 64 150.0 676 1541 2487

2 [155, 160) 10 64 157.5 665 1528 2444

3 [160, 165) 26 128 162.5 641 1498 2387

4 [165, 170) 40 128 167.5 617 1459 2368

5 [170, 175) 53 256 172.5 595 1420 2324

6 [175, 180) 62 256 177.5 563 1351 2180

7 [180, 185) 67 256 182.5 544 1319 2175

8 [185, 190) 32 128 187.5 514 1282 2166

9 [190, 195) 17 64 192.5 486 1213 1943

10 [195, 203] 4 64 197.5 518 1247 2043
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B. Feature Extraction

Speech signals are down sampled to 8 kHz and pre-

emphasized with the filter: H(ω) = 1− 0.97e−jω. MFCCs c1
to c12 and their first- and second-order derivatives (∆ and ∆∆)

are computed every 10 ms during voiced speech activity, using

25 ms frames and a 26-channel Mel filterbank. To account

for microphone and/or channel effects, mean and variance

normalization are applied at the utterance level. Unlike [6],

we use the time derivatives of MFCCs along with the static

features, which, as we will show empirically (Section IV),

leads to slightly better results.

To detect voiced frames, we use an unbiased estimate of the

autocorrelation function R(l):

R(l) =
1

L− l

L−1−l
∑

v=0

x(v)x(v + l) l = 0, . . . , L− 1, (5)

where l is the lag in samples and {x(v)}L−1
v=0 is a speech frame

of length L. A frame is declared as voiced if R(lp1)/R(0) is

greater than 0.4 (a commonly-used threshold [12]), where lp1
is the lag corresponding to the first autocorrelation peak.

C. Acoustic Modeling

The expectation-maximization algorithm is used for training

GMMs with diagonal-covariance components. Unlike in [6],

the number of components in a GMM is roughly proportional

to the number of speakers in its corresponding height group

(columns 3 and 4 of Table I). This ensures that the modeling

accuracy is similar across height groups.

As mentioned earlier, we use the ∆ and ∆∆ MFCC features

in addition to the static coefficients c1–c12. To see if the

proposed feature set leads to better acoustic models than those

trained using c1–c19 (as in [6]), we measure the separability

between GMMs corresponding to adjacent height groups.

The Kullback-Leibler (KL) divergence is a well known

measure of the dissimilarity or ‘distance’ between two prob-

ability density functions [13]. Since closed-form expressions

of the KL divergence are not available for Gaussian mixtures,

approximate solutions are often used in practice. Here, we use

the approximation proposed in [14]. The separability of λ(j)

with respect to its adjacent GMMs λ(j−1) and λ(j+1) (denoted

by η(j)) is computed using Eq. (6):

η(j) = (σ(j−1),(j) + σ(j+1),(j))/2, (6)

2 3 4 5 6 7 8 9
3

3.4

3.8

4.2

4.6

5

GMM index (j)

S
e
p

a
ra

b
il

it
y

 o
f 

G
M

M
 λ

(j
)

 

 
c

1
−c

19
c

1
−c

12
 + ∆ + ∆∆

Fig. 2. Separability of λ(j) (j ∈ {2, 3, . . . , 9}) with respect to λ(j−1) and

λ(j+1) (Eq. (6)) for the proposed feature set and the feature set in [6], using
the training subset of the TIMIT database.

TABLE II
RMSES (cm) AND CORRELATIONS FOR HEIGHT ESTIMATION USING

TIMIT (313 SPEAKERS; 3 si SENTENCES PER SPEAKER). THE PROPOSED

ALGORITHM IS COMPARED WITH THE ALGORITHMS IN [5], [1] AND [6].

Algorithm
RMSE (cm) Correlation

Male Female Overall Male Female Overall

Using SVMs [5] - - 6.8 - - -

Using Sg1 [1] 6.8 6.6 6.8 0.17 0.25 0.70

ML method of [6] 6.8 6.7 6.8 0.25 0.32 0.72

Proposed (N = 1) 6.5 6.4 6.4 0.33 0.32 0.74

Proposed (N = 4) 6.4 5.7 6.2 0.37 0.55 0.76

where σ(j−1),(j) and σ(j+1),(j) denote, respectively, the ap-

proximate KL divergences of λ(j−1) and λ(j+1) with respect

to λ(j). Figure 2 shows the value of η(j) (j ∈ {2, 3, . . . , 9}) for

GMMs trained using the two feature sets under consideration:

c1–c12 + ∆ + ∆∆; c1–c19. The proposed feature set clearly

results in models that are more separable; it is therefore

expected to yield better estimates of speaker height and SGRs.

D. Decision Rule

The most important feature of the proposed approach is the

weighted decision rule of Eq. (4). The weights {w1, . . . , wN}
can be chosen in several ways (based on model likelihoods,

empirical adjustments, etc.). In order to incorporate the con-

tributions of non-ML models without over emphasizing them,

we use a linearly-decreasing function of n:

wn =
2

N

(

1−
n

N + 1

)

n = 1, 2, . . . , N. (7)

Note that the weights defined by Eq. (7) sum to 1. Our height

estimation experiments (Sec. IV) revealed that N = 4 (weights

= {0.4, 0.3, 0.2, 0.1}) yields the best results on TIMIT.

IV. EXPERIMENTS AND RESULTS

This section demonstrates the efficacy of the proposed

approach via: (a) height estimation using the TIMIT database,

and (b) SGR estimation using the Tracheal Resonance (TR)

database from MIT [15].

A. Estimation of Speaker Height

Data from 313 TIMIT speakers (214 male, 99 female; differ-

ent from the training set) are used for evaluation. TIMIT con-

tains 10 utterances per speaker: 2 “shibboleth” sa sentences, 5

phonetically-compact sx sentences, and 3 phonetically-diverse

si sentences. While GMMs are trained using all available

utterances, only the si sentences are used for evaluation. Each

si sentence is 2–3 seconds long, meaning that the height of

each speaker is estimated using 6–9 seconds of speech.

Table II shows the RMSEs and correlation coefficients

(between actual height and estimated height) for the proposed

algorithm and the algorithms in [5] (using SVMs), [1] (using

Sg1 in Eq. (1)) and [6] (using c1–c19 with the ML decision

rule). Note that the RMSE for the SVM-based approach [5] is

taken from that paper (which does not report correlations and

errors by gender). We prefer RMSE over mean absolute error

because large estimation errors are captured better by RMSE.

Note that the proposed algorithm with N = 1 (row 4) uses the
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Fig. 3. Normalized likelihoods for a particular female test speaker (vkb0 in
TIMIT) showing the 4 most-likely GMMs (labeled 1–4 and highlighted in
red) and the corresponding average heights. This speaker belongs to height
group 5 (cf. Table I), but the most-likely estimate is group 3. By computing
a weighted height estimate with N = 4, the ML estimate is bettered by 3 cm.

ML rule like [6] but with different features; a value of N = 4

(row 5) is found to yield the best results.

Compared to [1], the proposed algorithm (with N = 4)

yields statistically-significant improvements in the within-

gender correlations (p < 0.05) and also an overall RMSE re-

duction of 9%. The achieved RMSE of 6.2 cm may not always

be acceptable in practice, but, to our knowledge, it is currently

the best result on TIMIT. Note that the overall correlations

are much larger than the within-gender correlations; this is

the result of large gender differences in speaker height. Male

speakers benefit mostly from the dynamic MFCC features (row

4 vs. row 3), while female speakers benefit mostly from the

weighted decision rule (row 5 vs. row 4). Figure 3 illustrates

with an example as to how the weighted decision rule mitigates

estimation error, when the ML rule is inaccurate.

B. Estimation of SGRs

Data from 14 speakers (7 male, 7 female) in the TR database

are used for this experiment. The database consists of utter-

ances of the form “ , say again,” and each utterance

has a corresponding accelerometer recording from which the

‘ground truth’ SGRs can be measured (further details can be

found in [15]). The TR database has been used previously

to evaluate the SGR estimation algorithm in [1]. Here, the

SGRs of each speaker are estimated using 6 randomly-chosen

utterances (each being about 1.5 seconds long).

Table III shows the RMSEs and within-gender correlations

(averaged over males and females) for the estimation of Sg1,

Sg2 and Sg3. Compared to [1], the proposed algorithm (with

N = 4) performs better with regard to Sg2 and Sg3 (the

RMSE reductions and correlation improvements are statisti-

cally significant; p < 0.05), but worse with regard to Sg1. The

performance drop for Sg1 is probably due to the fact that Sg1
does not correlate as strongly with height as do Sg2 and Sg3
[1]. The improvement achieved for Sg3 can be attributed to the

fact that the proposed approach is more direct compared to that

of [1], which estimates Sg3 via an estimate of Sg2. The main

advantage of the proposed algorithm, however, is its ability to

estimate SGRs rapidly; MFCC computation and GMM-based

scoring are better suited to real-time implementation than are

automatic formant and pitch tracking. Also, when SGRs are

used for speaker normalization [7], the same features can be

TABLE III
RMSES (Hz) AND WITHIN-GENDER CORRELATIONS (AVERAGED OVER

MALES AND FEMALES) FOR THE ESTIMATION OF Sg1, Sg2 AND Sg3
USING THE TR DATABASE (14 SPEAKERS; 6–9 seconds OF SPEECH PER

ESTIMATE). THE PROPOSED ALGORITHM IS COMPARED WITH THAT OF [1].

Algorithm
RMSE (Hz) Correlation

Sg1 Sg2 Sg3 Sg1 Sg2 Sg3

Using F0 and formants [1] 26 60 109 0.68 0.35 0.15

Proposed (N = 4) 33 50 92 0.37 0.62 0.58

used for both SGR estimation and recognition.

V. CONCLUSIONS

In this letter, an MFCC-GMM system is proposed for

the simultaneous estimation of speaker height and SGRs.

To compensate for the lack of a strong correlation between

MFCCs and height, the system uses a weighted decision rule

(instead of the ML rule) involving the N most-likely GMMs.

With N = 4, the proposed algorithm improves upon the state

of the art in height estimation, especially with regard to within-

gender correlations. It also estimates Sg2 and Sg3 better

than our previous estimation algorithm; more importantly,

SGRs can be estimated rapidly without relying on formant

and pitch tracking. The methods developed here can possibly

be improved further by: (1) using more training data for the

extreme height ranges (< 160 cm and > 190 cm), and/or (2)

training GMMs using discriminative criteria (e.g., maximum

mutual information).
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