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ABSTRACT

Time-varying linear prediction has been studied in the context of

speech signals, in which the auto-regressive (AR) coefficients of the

system function are modeled as a linear combination of a set of

known bases. Traditionally, least squares minimization is used for

the estimation of model parameters of the system. Motivated by the

sparse nature of the excitation signal for voiced sounds, we explore

the time-varying linear prediction modeling of speech signals using

sparsity constraints. Parameter estimation is posed as a 0-norm min-

imization problem. The re-weighted 1-norm minimization technique

is used to estimate the model parameters. We show that for sparsely

excited time-varying systems, the formulation models the underly-

ing system function better than the least squares error minimization

approach. Evaluation with synthetic and real speech examples show

that the estimated model parameters track the formant trajectories

closer than the least squares approach.

Index Terms— Linear prediction, sparse representation, 1-norm

minimization, speech analysis, non-stationary signals, time-varying

systems.

1. INTRODUCTION

Linear predictive coding (LPC) [1] is by far the most successful sig-

nal processing technique used in the study of speech signals. In

LPC formulation, speech signal is modeled as the output of a slowly

time-varying linear system (vocal-tract) excited by a periodic im-

pulse train input or a random noise input for voiced and un-voiced

sounds respectively. Traditional LPC assumes the signal to be quasi-

stationary over a short analysis interval, i.e., the system function is

constant.

Time-varying linear prediction has been proposed in [2] to ana-

lyze the non-stationary speech signal over longer analysis intervals.

A pth order all-pole filter with time-varying coefficients is used to

model the vocal-tract system function. Time-varying filter coeffi-

cients are modeled as a linear combination of a set of known basis

functions. The parameters of the system are estimated using a least

square error minimization approach similar to the quasi-stationary

approach. An inherent assumption in the least squares approach is

that the distribution of the excitation signal is Gaussian [1]. This

does not model the spiky impulse train excitation of voiced speech

signals. To account for the non-Gaussian nature of the excitation for

voiced signals, a robust parametric modeling approach is considered

in [3], where a Huber’s loss function based error metric is used in

the minimization problem.

Motivated by the sparsity of the excitation signal for voiced

speech segments, a sparse linear prediction frame-work for the study
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of speech signals is proposed in [4]. Quasi-stationary analysis of

speech is performed under the sparse excitation constraints. The

work in [4] has shown that the estimated system parameters model

the spectral envelope of the signal more accurately, while provid-

ing shift-invariant and pitch independent estimates for the system

function. Parameter estimation is posed as a ℓ0-norm minimization

problem. Due to the non-convex nature of the cost function, the ℓ0-

norm minimization is typically solved using ℓ1 relaxation techniques

[5]. It has been shown that iterative re-weighted ℓ1-norm minimiza-

tion [6] leads to a solution with enhanced sparsity compared to the

ℓ1-norm minimization [7].

In this paper, we examine the sparse linear prediction formula-

tion for the time-varying linear prediction problem. As in [2], the

parameters of the time-varying linear predictor are assumed to be a

linear combination of a set of known basis functions. The parameters

of the system are estimated by minimizing the ℓ0 norm of the exci-

tation signal. We show that for sparsely excited systems, the new

approach is able to track the system changes better than the least-

squares (MMSE) approach in [2].

2. PROBLEM FORMULATION

Let x[n] be a signal modeled as the output of an auto-regressive (AR)

linear system of order p

x[n] =

p
∑

i=1

ai[n]x[n− i] + e[n] (1)

where e[n] is the excitation signal for the AR linear system. For

voiced sounds, the excitation signal e[n] consists of a set of im-

pulses with a period corresponding to the rate of vibration of the

vocal-folds. Traditional LPC methods assume the signal to be quasi-

stationary over a short interval of 10-30 msec, meaning that the

time-varying system parameters ai[n] are considered to be constant

with respect to n. Time-varying linear prediction relaxes the quasi-

stationary assumption by allowing the system parameters to vary in

a parametric manner. Parameters are assumed to be a linear combi-

nation of a set of known basis functions {uk[n]}
q
k=1.

ai[n] =

q
∑

k=1

aikuk[n] (2)

Different choices for uk[n] are power series, trigonometric series,

and piece-wise constant basis functions [2]. In this paper, we em-

ploy the power series basis function uk[n] = nk. Using (1,2) the

prediction equation can be written as,

x̂[n] =

p
∑

i=1

q
∑

k=0

aikuk[n]x[n− i] (3)
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and the prediction error is given by:

e[n] = x[n]− x̂[n] (4)

Using vector notation,

e[n] = x[n]−X
T
na (5)

where,

a = [a10, a11, . . . , a1q, . . . , ap0, ap1, . . . , apq]
T

Xn = [x[n− 1], u1[n] ∗ x[n− 1], . . . , uq[n] ∗ x[n− 1],

. . . , x[n− p], u1[n] ∗ x[n− p], . . . , uq[n] ∗ x[n− p]]T
(6)

For an analysis interval of N samples, we can express the error vec-

tor as,

eN×1 = xN×1 −XN×p(q+1)ap(q+1)×1 (7)

where the rows of X are formed using Xn for n ∈ [0, N − 1] and

x[n] is defined over −p ≤ n ≤ N − 1. The parametric variation of

the system function allows for longer analysis intervals, and hence

compact modeling of the time-varying properties of the system. The

analysis interval for speech can be typically 150-400 msec, which

is much longer compared to the quasi-stationary LPC (10-30 msec)

interval. Also, the time-varying system is characterized by a total

of p(q + 1) number of parameters, in comparison to p-poles for ev-

ery analysis interval of 10-30 msec in quasi-stationary analysis. For

smaller values of q, this might result in a compact model with fewer

parameters compared to the quasi-stationary case.

In the time-varying LPC method proposed in [2], the parame-

ters are estimated by minimizing the total squared prediction error

(We refer to this method as Ls-TVLPC method). The minimization

problem can be equivalently written as,

â = argmin
a

‖x−Xa‖22 (8)

For a system excited by an i.i.d Gaussian random excitation sig-

nal, least squares minimization for the prediction error is also the

maximum-likelihood method of parameter estimation [1] and results

in an accurate modeling of the system. However, the approach gives

only an approximate representation in the case of systems with ex-

citation signal which is non-Gaussian, which is the case for voiced

segments of speech. For voiced sounds, the distribution of excitation

consists of a large concentration of samples around the mean, and a

few samples (excitation impulses) with larger values compared to

the zero mean value.

In this paper, we pose the parameter estimation problem using

sparsity promoting ℓ0-norm (referred to as Sp-TVLPC) based opti-

mization .

â = argmin
a

‖x−Xa‖0 (9)

Motivation for the sparsity constraint comes from the impulsive

nature of the excitation signal for voiced speech segments. Solving

the ℓ0-norm minimization problem as such involves combinato-

rial search, which is NP-hard [8]. The advances in the field of

compressive sensing (CS) have led to the development of effec-

tive solutions to solve the problem in (9). A standard approach in

CS is to use a convex relaxation of the ℓ0-norm, i.e., an ℓ1-norm;

ℓ1-norm minimization also results in a sparse solution to the error

vector e. In solving for the ℓ1 minimization, sparsity can be en-

hanced by using iterative re-weighted schemes studied in [7]. The

ℓ0-minimization is thus approximated by solving a set of weighted

ℓ1-minimization problems. In this paper, we use the iterative re-

weighted ℓ1-minimization algorithm [6] to solve for 9. The weights

wk are assumed to be unity for the first iteration, and the cost func-

tion ‖W(x − Xa)‖1 is minimized for a, here W is a diagonal

matrix formed using weights wk. The estimated minimum predic-

tion error vector ê = x −Xâ is used to update the weights for the

next iteration; we use the update equation wk = (|ê[k]| + ǫ)−1 in

the present work (Alternate choices for updating weights are given

in [7]). The parameter ǫ is typically chosen to be smaller than the

expected maximum amplitude of the vector e. The algorithm is

summarized in Table. 1.

Table 1. Iterative re-weighted ℓ1 minimization algorithm

Initialization: i = 0
W

0 = IN×N

Iterations:

step 1: Solve for the ℓ1-minimization problem,

â
i = argmin

a

‖Wi(x−Xa)‖1

ê
i = (x−Xâ

i)
step 2: Update the weight matrix W:

W
i+1 ← diag

(

1/
(

|êi[k]|+ ǫ
))

step 3: Increment i: i← i+ 1
goto step 1 and repeat until convergence

3. EXPERIMENTS AND RESULTS

We evaluate the proposed method using synthetic and real speech

examples. Power series basis uk[n] = nk is used for the expansion

of the AR model coefficients. A (p, q) power series model denotes a

system function with p-poles and a qth order power series basis used

for the AR model. In each case, the proposed method is compared

with the Ls-TVLPC method. Iterative re-weighted ℓ1-norm mini-

mization is implemented using “cvx” tool box [9]. The parameter ǫ
in the algorithm is chosen to be 0.01. The iterations are repeated till

the difference in the norm of the excitation signal between succes-

sive iterations reduces below 10−4 (chosen empirically).

3.1. Synthetic examples

A synthetic speech signal is generated using a cascade of three all-

pole time-varying filters excited by a periodic impulse train. The

resonant frequencies of the filters are changed such that, the initial

resonant frequencies correspond to the vowel ’/a/’, and the final res-

onant frequencies correspond to vowel ’/i/’. Periodicity of the input

excitation is also varied linearly from 100 Hz to 300 Hz and a sam-

pling rate of fs = 8000 samples/sec is used. A (6,5) power-series

model is used for the time-varying AR system. To evaluate the accu-

racy of the system representation, we compare the center frequency

and the radius trajectories of poles using Sp-TVLPC and Ls-TVLPC

methods with the actual values. The error in the estimation of a pole

z[n] = r[n]ejθ[n] is measured using the mean absolute frequency

error (MAFE) and mean absolute radius error (MARE) defined as,

MAFE =
1

N

N
∑

n=1

fs

2π
|θ[n]− θ̂[n]| Hz (10)

MARE = 10 log10

(

1

N

N
∑

n=1

|r[n]− r̂[n]|

)

dB (11)

where N is the number of samples in the analysis interval, r[n]ejθ[n]

and r̂[n]ejθ̂[n] are the simulated and the estimated pole locations.

Fig. 1 shows the estimated center frequency trajectories. From

the figure, we can see that the Sp-TVLPC method follows the orig-

inal center frequency trajectory better than the Ls-TVLPC method.
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Fig. 1. Estimated center frequency trajectories using (a) Sp-TVLPC

and (b) Ls-TVLPC.
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Fig. 2. Estimated radius trajectories for the three formants.

The trajectory estimated using Ls-TVLPC shows a ripple behavior

around the original trajectory. The radius trajectories for the three

formants are shown in Fig. 2. The radius trajectory estimated us-

ing Ls-TVLPC deviates from the actual trajectory very much com-

pared to the Sp-TVLPC method. Figs. 1,2 show that the Sp-TVLPC

method results in accurate modeling of the sparse time-varying lin-

ear system compared to the Ls-TVLPC method. The MAFE mea-

sure obtained is shown in Table 2. The average of MAFE for three

formants is close to zero for Sp-TVLPC and it is 4.7 Hz for Ls-

TVLPC. However average of MARE for three formants is -24.8 dB

for Ls-TVLPC method and below -80 dB for Sp-TVLPC.
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Fig. 3. Comparison of the estimated excitation signal using Sp-

TVLPC and Ls-TVLPC methods.

To further demonstrate the power of the Sp-TVLPC method, we

compare the excitation signal estimated using the two methods. Fig.

3 shows the excitation signal estimated using Sp-TVLPC and Ls-

TVLPC methods. The Sp-TVLPC method estimates the sparse im-

pulse train, while the excitation signal estimated using Ls-TVLPC is

not sparse. It can be seen that the estimate obtained using Sp-TVLPC

is not affected by the changes in the formant frequencies of the sys-

tem or the changes in properties of the excitation signal (pitch of

the excitation). This demonstrates the robustness of the Sp-TVLPC

method to changes in the excitation periodicity. On the other-hand,

the error in the excitation signal estimated using Ls-TVLPC is less

Method f1 (Hz) f2 (Hz) f3 (Hz) AVG (Hz)

Sp-TVLPC 3.9e-5 1e-5 2.2e-5 2.3e-5

Ls-TVLPC 4.121 3.2897 6.8734 4.7

Table 2. Comparison of MAFE measure for the three formants.

when the pitch is close to 100 Hz, and more when the pitch is high,

indicating the effect of pitch on the error in modeling the system.

The transition between the two vowels in a diphthong is typi-

cally smooth with formant frequencies varying gradually from the

first vowel to the second vowel in a smooth manner. To evaluate

such transitions, an experiment is conducted using a synthetic sig-

nal of duration 200 msec, generated using a 2-pole filter with a step-

linear variation in the center frequency excited by a periodic impulse

train of frequency 300 Hz. The center frequency is kept constant for

the initial and final 60 msec of the signal at 1000 Hz and 2500 Hz

respectively, and linear variation in between. Fig. 4(a) shows the

estimated trajectories using a (2,3) power series model. The power-

series model constrains the parameter variation to be smooth. With

third order model chosen for AR coefficients, we can see that the

system can be modeled only approximately using both the meth-

ods. MAFE is found to be 55.6 Hz and 63.04 Hz for Sp-TVLPC

and Ls-TVLPC methods respectively, and MARE is -35.3 dB for

Sp-TVLPC and -20.5 dB for Ls-TVLPC. Fig. 4(a) also shows the

estimated excitation signal which is much sparser in the case of Sp-

TVLPC compared to Ls-TVLPC method.
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Fig. 4. Estimated Frequency trajectories for (a) step-linear variation

of resonant frequency (estimated excitation during linear portion of

the system is also shown), and (b) two cascaded resonators with

linearly increasing and decreasing center frequencies.

Another experiment is carried out to evaluate the usefulness of

the proposed approach to track closely spaced center frequency tra-

jectories. The synthetic signal is generated by passing a 300 Hz

periodic impulse train through a 4-pole system, with center frequen-

cies varying linearly. Fig. 4(b) shows the estimated center frequency

trajectories. Sp-TVLPC method resolves the frequencies better com-

pared to the Ls-TVLPC method. The trajectory estimated using Ls-

TVLPC deviates from the actual trajectory as the center frequencies

get closer, while Sp-TVLPC follows the trajectory very closely. The

deviation from the target trajectory is less in case of Sp-TVLPC even

at the cross-over point of the two trajectories. Average of the MAFE

for two trajectories is 1.58 Hz for Sp-TVLPC and 15.44 Hz for Ls-

TVLPC, and average MARE is -18 dB and -14 dB for Sp-TVLPC

and Ls-TVLPC respectively.

Computationally, Sp-TVLPC is much complex compared to the

Ls-TVLPC method. Solving one ℓ1 minimization takes 5 times more

computation time compared to the ℓ2 minimization problem; on a In-

tel(R) Core(TM) i5 CPU M520 @2.40GHz with 4GB RAM, ℓ1 min-

imization takes an average 1.2584 sec, while ℓ2 problem is solved in

0.2457 sec. Additionally, computation time scales with the number

of iterations in the re-weighted scheme for solving Sp-TVLPC.
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Comparison AVG SPDIFF (dB)

Sp-TVLPC vs Ls-TVLPC 1.17

Sp-TVLPC vs quasiLPC 1.25

Ls-TVLPC vs quasiLPC 1.85

Table 3. AVG-SPDIFF comparison for diphthong segment ’/aI/’.

3.2. Speech example

Experiments are conducted on real speech signals sampled at 8000

Hz. An analysis interval of 400 msec is chosen for time-varying

linear prediction analysis. A (8,5) power series model is used for

the time-varying AR coefficients. Since we do not know the ac-

tual formant tracks for real speech, we compare the TVLPC meth-

ods with the quasi-stationary LPC analysis (quasiLPC) using sparse

linear prediction [4]. Quasi-stationary analysis is carried out on in-

tervals of duration 20 msec, with a shift of 5 msec in the succes-

sive analysis intervals; the number of poles is chosen to be 8. Note

that the total number of AR coefficients required in quasiLPC is 640

while TVLPC methods require only 48 parameters for a total sig-

nal duration of 0.4 sec. The signal is windowed using a Hamming

window prior to parameter estimation. Estimated time-invariant fil-

ter is compared with the time-varying filter evaluated at the center of

the analysis interval. The estimated system functions are compared

using the average spectral difference measure (AVG-SPDIFF) as in

[10]; i.e., the spectral difference is computed as the mean of the in-

stantaneous spectral difference measure evaluated at a few analysis

points of interest (for example, the position of pitch pulses in the

excitation).

AVG-SPDIFF =
10

loge 10

[

2

L

L
∑

n=1

p
∑

k=1

(ck[n]− c′k[n])
2

]1/2

(12)

where ck[n] and c′k[n] are the cepstra of the two systems compared.

Fig. 5 shows the estimated center frequencies of the time-

varying all-pole filter for diphthong ’/aI/’. Figs. 5(b,c,d) show

the frequency response of the instantaneous system functions com-

puted at the center of the analysis interval corresponding to quasi-

stationary analysis. From the figures, we can see that the trajectories

of both Ls-TVLPC and Sp-TVLPC match closely. The trajectories

estimated using time-varying methods correspond to smoothed tra-

jectories of the quasi-stationary analysis case. This can be attributed

to the parametric variation of the system function constrained to

the power-series basis. From Figs. 5(c,d), we can notice that, in

the stationary portions of the spectrum where the formant frequen-

cies are nearly constant, Ls-TVLPC method shows deviation from

the expected trajectory showing a ripple behavior, where as Sp-

TVLPC estimates are smooth without ripples. Table. 3 shows the

AVG-SPDIFF measure between the three methods compared. AVG-

SPDIFF is less than 2 dB between the three methods. AVG-SPDIFF

between Sp-TVLPC and quasiLPC is less than the difference be-

tween Ls-TVLPC and quasiLPC. This is because both Sp-TVLPC

and quasiLPC methods are based on ℓ0-norm minimization, while

Ls-TVLPC uses least-squares minimization.

4. CONCLUSIONS

We have examined the sparse linear prediction formulation for the

time-varying linear prediction case. Allowing the system function

to vary in a parametric manner results in modeling the time-varying

spectral envelope of the speech signal. The parameter estimation is

posed as an ℓ0-norm minimization problem. Through experimental

evaluation, we show that the proposed approach of estimating sparse
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Fig. 5. (a) Wideband spectrogram of the original signal. (b,c,d)

Frequency response of the system function as a function of time using

quasi-stationary LPC analysis, Sp-TVLPC, and Ls-TVLPC methods.

Estimated formant tracks are also shown.

residual translates to more accurate modeling of the system function

compared to the least-squares based approach. The present method

exploits only the sparsity of the excitation signal, we can model the

system itself as sparse for further advantage.
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