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ABSTRACT

This work introduces an approach to linear predictive signal analysis

utilizing a Gaussian mixture autoregressive model. By initializing

different autoregressive states of the model to approximately corre-

spond to the target signal and the expected type of undesired signal

components, such as background noise, the iterative parameter esti-

mation converges towards a focused linear prediction model of the

target signal. Differently initialized and trained variants of mixture

linear prediction are evaluated using objective spectrum distortion

measures as well as in feature extraction for speech detection in the

presence of ambient noise. In these evaluations, the novel analysis

methods perform better than the Fourier transform and conventional

linear prediction.

Index Terms— linear prediction, spectrum analysis, speech de-

tection

1. INTRODUCTION

Linear predictive (autoregressive) modeling is used to compactly

parametrize spectra of time signals, such as digital speech and au-

dio, as all-pole filters [1]. In particular, it is widely used across the

field of speech processing for analyzing and synthesizing speech sig-

nals. Conventional linear prediction (LP) analysis fits the strongest

peaks of the power spectrum with an all-pole envelope. As a sim-

ple spectrum analysis method comparable to the discrete Fourier

transform/fast Fourier transform (FFT), it is not designed to be par-

ticularly resistant against signal corruptions such as additive noise.

Time-weighted linear predictive methods, which try to alleviate this

by emphasizing certain parts of the analysis frame using various

heuristic weighting schemes, have previously shown improved ac-

curacy and robustness in several applications [2] [3] [4] [5] [6] [7].

A new probabilistic mixture decomposition approach to linear

prediction is proposed in this paper. The signal is modeled as being

generated by a hidden state process, where one target state corre-

sponds to an all-pole filter representing the presumed target signal

while the filter(s) associated with the other state(s) model expected

types of signal corruptions. It is shown that the approach corre-

sponds to a new, probabilistic form of time-weighted linear predic-

tion. This study sets out to investigate this new approach by studying

whether a suitable initialization of the state-specific all-pole filters,

followed by an iterative re-estimation procedure, can tangibly im-

prove the accuracy and/or the robustness of short-time magnitude

spectrum analysis. Towards this end, the accuracy and robustness of

the proposed method are evaluated and compared against standard

methods by studying average spectral distances between clean and

noisy speech spectra. The newly proposed approach, mixture linear

prediction, is then compared against FFT and conventional LP as the

basis of feature extraction of a realistic application, speech detection

in acoustic monitoring of a noisy environment.

This work was supported by the EC FP7 project Simple4All (287678).

2. MIXTURE LINEAR PREDICTION

2.1. Linear prediction and weighted linear prediction

Linear predictive methods assume that the signal sn follows a zero-

mean autoregressive (AR) process sn =
∑p

k=1 aksn−k + Gun

where G is a gain factor and un is the excitation signal [1]. In the z
domain, this model corresponds to an all-pole filterH(z) = G/(1−
∑p

k=1 akz
−k). The signal is thus assumed to be linearly predictable

from its past samples as ŝn =
∑p

k=1 aksn−k . In standard lin-

ear prediction (LP) analysis, the predictor coefficients ak are solved

by minimization of the prediction error energy
∑

n(sn − ŝn)
2. A

more general formulation is weighted linear prediction (WLP) [8],

which instead minimizes a time-weighted prediction error energy

EW =
∑

n(sn − ŝn)
2Wn, where the weighting function Wn is

chosen to emphasize parts of the analysis frame considered most

reliable. Previously, the weighting function has typically been cho-

sen as the short-time energy (STE) of past p signal samples, Wn =
∑p

i=1 s
2
n−i [8] [2] [4]. Standard LP, on the other hand, would follow

as a special case by making Wn = c, a constant for all n. In any

case, the coefficients of this generalized model are solved by setting

∂EWLP/∂aj = 0, 1 ≤ j ≤ p, leading to the normal equations

p
∑

k=1

ak

∑

n

Wnsn−ksn−j =
∑

n

Wnsnsn−j , 1 ≤ j ≤ p. (1)

In the presence of stationary background noise, STE weighting

emphasizes the parts of the analysis frame with locally high signal-

to-noise ratio (SNR). WLP with STE weighting and variants based

on the same principle have been applied as robust spectrum anal-

ysis methods in several studies. They have shown improved accu-

racy and robustness in formant estimation [7] [8] as well as in fea-

ture extraction for large-vocabulary continuous speech recognition

[2] [6] and text-independent speaker verification [4] [5]. Recently,

it was shown in [9] that it is possible to improve the robustness of

formant estimation with respect to high fundamental frequency, a

typical source of difficulty in conventional LP, by designing a WLP

weighting function that attenuates the overly strong contribution of

the glottal source. The present study aims to improve the robustness

of linear predictive analysis by developing a general method that can

be made to focus on different aspects of the signal while avoiding

undesired components. The proposed approach is shown to extend

the previous work on weighted linear prediction.

2.2. The mixture linear prediction model

In mixture linear prediction, the signal sn is modeled as a mixture

of J autoregressive (AR) processes with conditional density

f(sn|sn−1, . . . , sn−p, λ) =
J
∑

i=1

pn,i
1

σi
φ

(

un,i

σi

)

, (2)
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where λ is the model’s parameter set and φ(·) is the standard normal

density function so that un,i is a zero-mean Gaussian white noise

process, with variance σ2
i , acting as excitation driving the AR pro-

cess associated with the ith state. The AR difference equations are

sn = a0,i +

p
∑

k=1

ak,isn−k + un,i, 1 ≤ i ≤ J, (3)

where the a0,i are intercept (constant) terms. In Eq. 2, pn,i =
P (qn = i|sn−1, . . . , s0, λ) at time n is the prior distribution of the

underlying hidden state process qn ∈ {1, . . . , J} determining which

autoregressive model generates sample sn. In the present study, qn
is considered i.i.d. and modeled as pn,i = Pi (see Section 2.3). An-

other option would be for it to follow a first-order Markov process,

leading to a linear predictive hidden Markov or Markov-switching

[10] [11] model, with a somewhat larger computational cost.

Mixture-based AR models have been extensively studied in time

series analysis and econometrics using both first-order Markov [10]

[11] [12] and i.i.d. [13] assumptions for the hidden state process

qn. In speech processing, they appear not to have been previously

applied to low-level signal processing such as spectrum analysis.

Signal models related to the current one have, however, been used

in some studies as recognition models to parametrize utterances. In

these studies, the hidden Markov models proposed by Poritz [14] and

Juang and Rabiner [15] differ from the present model especially by

applying the AR dynamics in separate frames, whereas the Markov-

switching model studied by Ephraim and Roberts [16] and a related

noise-aware model [17] do, similarly to the present signal model,

consider each sample and its associated hidden state qn. Vector au-
toregressive Gaussian mixture and hidden Markov models have also

been applied on the level of feature vectors to parametrize their tem-

poral evolution [18] [19].

2.3. Gaussian mixture linear prediction

In order to implement the method, the Gaussian mixture model

(GMM) and its associated learning algorithm [20] can be extended

to accommodate Gaussian autoregressive observation distributions

instead of simple Gaussian distributions. A conventional (not au-

toregressive) univariate GMM is specified by the set of parameters

λGMM = (P1, . . . , PJ , µ1, . . . , µJ , σ
2
1 , . . . , σ

2
J ), where Pi, µi

and σ2
i , 1 ≤ i ≤ J , are the component weights (prior probabil-

ity distribution of the hidden state qn), Gaussian mean values and

Gaussian variances, respectively. In contrast, the Gaussian mix-

ture linear prediction (GMLP) model is specified by λGMLP =
(P1, . . . , PJ , a0,1, a1,1, . . . , ap,1, a0,2, . . . , ap,J , σ

2
1 , . . . , σ

2
J) (cf.

Eq. 3). The parameters of this model can be estimated by an imple-

mentation of the iterative expectation-maximization (EM) principle

[21]. Each iteration consists of an expectation (E) step followed by a

maximization (M) step. In solving the model, the excitations un,i are

estimated as prediction residuals en,i = sn−a0,i−
∑p

k=1 ak,isn−k.

1. In the E step, the hidden state posterior probabilities γn(i) =
P (qn = i|sn, . . . , sn−p, λGMLP) are determined as γn(i) =

max

(

0.01,
Pi(1/

√
2πσ2

i
) exp (−e2n,i/(2σ

2

i ))
∑

J
j

Pj(1/
√

2πσ2

j
) exp (−e2

n,j
/(2σ2

j
))

)

, i.e., a lower

limit of 0.01 is imposed in this study.

2. In the M step, the component weights are re-estimated as

Pi =
∑

n γn(i)
∑

n 1
and the noise variances as σ2

i =
∑

n γn(i)e2n,i
∑

n γn(i)
.

For the AR parameters ak,i, define xn,0 = 1 (for the in-

tercept) and xn,k = sn−k, k > 0, and solve the equa-

tions
∑p

k=0 ak,i

∑

n γn(i)xn,kxn,j =
∑

n γn(i)snxn,j ,

0 ≤ j ≤ p. Notably, except for the inclusion of the intercept

term, the latter equations are equivalent to standard WLP

(Eq. 1) weighted by the state posterior probabilities from the

E step, i.e., Wn = γn(i). (On the other hand, with the inter-

cept terms, p = 0 would make the re-estimation procedure

equivalent to that of standard GMMs [20].)

Because the EM algorithm increases the likelihood of the model

with each iteration, it will converge towards a local likelihood max-

imum [21] whose location on the parameter hypersurface depends

on the initial parameter values. A rough distinction between desired

and undesired signal qualities can thus be made in choosing the ini-

tial values of the AR parameters in order to influence their final val-

ues obtained after EM re-estimation. In applying GMLP, one of the

states is designated as target and the other one(s) as non-target.

3. APPLICATION TO SPEECH SPECTRUM ANALYSIS

In the present study, Gaussian mixture linear prediction with J = 2
is applied to robust speech analysis. The goal is to extract as target

state 1 (i = 1 in Eq. 3) an autoregressive model that depicts the

formant structure of clean speech while the non-target state 2 (i = 2
in Eq. 3) captures more of undesirable, noisy signal components.

To accomplish the stated goals, the target ARmodel is initialized

with a0,1 = 0, a1,1 = 0.97 and ak,1 = 0, 2 ≤ k ≤ p. The

initial target model thus corresponds to the first-order all-pole filter

1/(1 − 0.97z−1), the inverse of the commonly used pre-emphasis

filter 1− 0.97z−1 used to compensate for the general spectral tilt of

voiced speech. It can thus be viewed as a rough approximation of

the low-pass spectral shape characteristic of voiced speech.

In contrast to the “speech-like” initialization of state 1, state 2 is

initialized to depict a “noise” part of the signal. In the present study,

this is done in three different ways. In the first variant, referred to as

GMLP-0, the AR parameters of state 2 are initialized with all zeros,

i.e., ak,2 = 0, 0 ≤ k ≤ p. This gives a filter with a flat spectrum,

different from the low-pass characteristics assigned to state 1, and

causes the EM iteration to make the initial distinction between the

states only based on the spectral differences, not signal amplitudes

(as both intercepts are zero). Fig. 1 (left panel) shows the evolu-

tion of target and non-target spectra of GMLP-0 for a speech frame.

It can be noted that the proposed method captures spectral details

which are evident in the FFT spectrum but lost by conventional LP.

In the second variant, termed GMLP-H (for “High” signal value)

the lagged AR parameters are also initialized with zeros, but the

intercept is initialized with the largest positive signal value, i.e.,

a0,2 = max(sn). This causes the distinction between the states

to be made not only based on the spectral differences, but also by

favoring (as target model) smaller amplitudes while avoiding large

amplitude peaks (caused by noise or by the voice source at glottal

closure instants [9]). For GMLP-H, it was found beneficial to per-

form one preliminary iteration of EM where only the Pi and the σ2
i

are updated. Finally, in order to take into account the specific type of

background noise encountered, the third variant GMLP-N initializes

the lagged AR parameters to correspond to the spectrum of the noise,

a training sample of which is assumed to be available. This is accom-

plished as follows: 1) the noise training signal is preprocessed and

divided into frames similarly to the analyzed signal; 2) conventional

LP filters are computed for each frame, converted to cepstra accord-

ing to the well-known formula [22] and averaged (as averaging in

the cepstral domain is perceptually meaningful [23]); 3) the conver-

sion formula is applied in reverse direction to convert the cepstral

mean to an AR model to give the parameters ak,2, 1 ≤ k ≤ p. For
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Fig. 1. Evolution of the states of mixture linear predictive models

across iterations in the analysis of slightly noisy speech frames. LP

and FFT spectra are shown for comparison with GMLP target model

spectra after some iterations.

GMLP-N, the intercept is again initialized with zero, i.e., a0,2 = 0.
Each method initializes Pi = 0.5 and σ2

i = 0.01, 1 ≤ i ≤ 2.
In conventional LP, an intercept term is generally not used. If

an AR process has zero mean, the intercept will also be zero [10]

and can thus be omitted. For speech signals, the assumption of zero

mean approximately holds using the typical analysis frame sizes of

roughly 20-30 milliseconds, as speech has negligible energy at fre-

quencies low enough to affect the mean of the frame. In GMLP,

however, the inclusion of the intercept term, even if initialized with

zero for each state, allows two effects. First, the target model is free

to focus on any subset of the analysis frame without the constraint

that those samples sum to zero. Second, as real-world noises are of-

ten of lowpass type, it is possible that the noise, which ideally would

be captured by a non-target AR model, would have a non-zero mean

value across the short analysis frame. However, despite the inclusion

of the intercept terms in the iteration, the final AR model is chosen

asH(z) = 1/(1−∑p
k=1 ak,1z

−k), i.e., without the intercept term.

4. EXPERIMENTAL RESULTS

4.1. Evaluation against standard spectrum analysis methods us-

ing log spectral distance

Quality and robustness of spectrum models are first evaluated using

the log spectral distance [23] between clean and noisy spectra as an

objective quality measure. It is computed for two cases: 1) between

a noisy all-pole spectrum and the corresponding clean FFT spec-

trum and 2) between a noisy all-pole spectrum and the correspond-

ing clean all-pole spectrum. The speech material consists of 800 sen-

tences from the TIMIT American English database, artificially cor-

rupted by factory1 and babble noise from the NOISEX-92 database

with segmental (frame-average) signal-to-noise ratio (SNR) 20 dB,

0 dB and -20 dB. For each noise type, these distances are averaged

over all non-silent 25-ms frames, excluding the sometimes silent

voiced closures, according to the TIMIT phonetic transcription. The

SNR-specific averaged scores are further averaged between the two

noise types to produce the results shown in Fig. 2. For each of the

three GMLP variants, two and eight iterations have been evaluated

in order to gain an overview of the effect of this parameter.

Evidently, for some initialization methods, such as GMLP-H in

this study, the number of iterations does not much change the model.

For the other two methods evaluated, the number of iterations ap-

pears to function as a control parameter determining the balance be-

tween robustness (measured by degradation as compared to the same

method’s clean version, the vertical axis) and accuracy (measured by

the distance to the clean version of FFT). On a side note, FFT itself

was also evaluated in terms of robustness, but was not competitive

against any of the all-pole methods, an issue which has been encoun-

tered previously in many feature extraction studies, e.g. [2] [4] [24].
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Fig. 2. Log spectral distances (in dB) from noisy all-pole spectra to

clean FFT spectra (horizontal axis) and to the clean version of the

same all-pole method (vertical axis) plotted as a trajectory in two

dimensions with signal-to-noise ratio (SNR) as parameter.

4.2. A system for speech detection in environment monitoring

We consider speech activity detection in acoustic environment mon-

itoring as a practical application for the method. In security-oriented

applications, such systems typically aim to detect abnormal sounds

which can include shouts, screams, gunshots, explosions, banging

sounds and non-neutral speech [25] [26] [27] [28] and may require

speech detection capability in order to detect non-neutrality or to

characterize speakers by paralinguistic analysis [29]. In secluded ar-

eas where speech activity typically does not occur, speech can be

a target event of interest in its own right. Besides surveillance ap-

plications, long-term speech event detection can be employed with,

e.g., various context-aware user interfaces or simply for logging the

long-term activity patterns in a particular environment [30].

Compared to typical voice activity detection (VAD), which is

usually performed to assist speech coding [31], automatic speech

recognition or speaker recognition [32] and a detection decision is

generally required within frames of speech, the environment moni-

toring application has two special characteristics. First, the detection

decisions are only required on a coarse time scale of seconds. Thus,

the system has some freedom to focus on detection performance and

noise robustness by using a longer analysis window and increasing

the detection delay. Second, both the recording environment and the

transmission channel are known, as the recording equipment is as-

sumed to be installed in a fixed position or at least to stay in the

same location for long time periods. Channel normalization is thus

not an issue and it also becomes possible to train statistical models

off-line to represent the known noise environment. To address these

considerations, we adapt our earlier system for detecting shouted

speech in noise [25] which is based on statistical classification of

mel-frequency cepstral coefficient (MFCC) feature vectors.
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The input audio signal, sampled at 16 kHz and pre-emphasized

withH(z) = 1− 0.97z−1 , is processed in analysis frames of 25 ms

taken every 10 ms. The detection decisions are made once per sec-

ond using an analysis block length of five seconds. MFCCs are ob-

tained for each frame using a usual processing chain [33]: 1) squared

magnitude spectrum computation; 2) weighted mel-filterbank band

energy computation (here, we use 40 triangular filters spaced evenly

on the mel scale); 3) logarithm and 4) discrete cosine transform. In

step 1, similarly to earlier studies, we substitute all-pole methods as

alternative to the standard FFT for magnitude spectrum computation.

TwelveMFCCs, excluding the zeroth one, constitute the feature vec-

tor. Inclusion of frame energy or delta coefficients was experimented

with but was not found to improve the performance.

After feature extraction, high-energy frames are selected. This

is accomplished by computing the logarithmic energy of each frame

within the five-second block and clustering these 500 energy values

En into two clusters by k-means [33] after initializing the cluster

means with min(En) and max(En) [25]. Only the frames ending

up in the cluster initialized with max(En) are selected for further

processing, i.e., either to serve as training data (in the training phase,

overlapped frame selection decisions are averaged) or to contribute

to the detection decision in the classification phase. This approach

focuses on the locally most energetic frames that have the highest

SNR in the case of stationary background noise.

Gaussian mixture models (GMMs) with eight components and

diagonal covariance (using more components did not produce better

results) are trained using ten iterations of EM for GMMs [20] to rep-

resent M different speech classes and non-speech. In this study, the

latter class corresponds to background noise. Before training, the

component weights of each GMM are initialized with uniform dis-

tributions, the variance parameters by 0.1 times the global variances

of the features, and the mean parameters by a heuristic selection

approach [34]. The detector computes averaged logarithmic like-

lihoods, denoted by Lspeech,1, . . . , Lspeech,M and Lnon-speech, of the se-

lected feature vectors having been produced by each GMM. Speech

is decided to be present if L = maxm(Lspeech,m) − Lnon-speech > T ,
where T is a threshold for the log likelihood ratio L.

4.3. Results for speech detection in noise

The speech material consists of 24 Finnish sentences, each spoken

by 11 male and 11 female speakers [25]. The detection system is

trained using clean speech but the test speech is artificially corrupted

by noise. The factory1 and factory2 noises from NOISEX-92 are

considered, the former of which is less stationary and contains obvi-

ous impulsive and transient sounds. For each test utterance, a pure

noise segment of equal length is also classified. In order to ensure

speaker independence, the evaluation is carried out as 22-fold cross

validation where each speaker in turn is chosen as the test speaker

and the material from the other 21 speakers is used for training the

models. The experiment is first carried out for detecting normal

speech only (M = 1) and then, because the complete material con-

tains the same sentences spoken both by normal voice and by shout-

ing, for detecting speech with variable vocal effort, i.e., by including

also shouted speech in the training and test material (M = 2).
Table 1 shows the equal error rates (EER) with factory1 and fac-

tory2 noise. The statistical significance of the differences between

methods was evaluated using a significance test appropriate for de-

tection systems [35]. The “dependent-case” version of this test was

employed, as all the detections use the same analysis block division

and original speech material. With normal speech, each spectrum

analysis method achieves perfect detection above and at 0 dB SNR

(not shown) with both noise types. The GMLP methods generally

perform best, and in many cases achieve statistically significant im-

provement over both baselines FFT and LP, as denoted by boldface.

GMLP initialization obviously has an effect on performance but each

evaluated GMLPmethod performs at least adequately in comparison

to the baselines. Compared to the markedly nonstationary factory1

noise, factory2 is noticed to be easier and also gets more help from

modeling by GMLP-N. As expected, inclusion of shouted speech

generally improves the detection scores in a given noise scenario.

Table 1. EER scores (%) for speech detection in two types of noise

using FFT, LP and three GMLP variants as base spectrum analysis

methods in MFCC computation. Detection scores are also shown

for the case in which both the training and test material contain both

normal and shouted speech. In this case, scores for the best number

of iterations among 2, 5 and 8 are shown for each GMLP method.

The GMLP scores that are statistically significantly better than both

FFT and LP in the corresponding case are indicated in boldface.

factory1 factory2

SNR (dB)

Method -5 -10 -15 -5 -10 -15

Normal speech only

FFT 2.5 18.4 22.8 0.0 4.7 21.0

LP 3.5 19.8 32.0 0.2 6.0 21.5

GMLP-0 (2 it.) 1.4 14.4 21.7 0.2 5.4 21.5

(5 it.) 1.1 7.6 26.1 0.2 6.0 22.0

(8 it.) 2.5 11.4 35.0 0.2 4.7 21.5

GMLP-H (2 it.) 2.2 13.6 22.2 0.0 4.7 21.4

(5 it.) 0.9 9.5 24.1 0.2 6.2 21.5

(8 it.) 1.4 16.1 28.8 0.3 7.0 22.0

GMLP-N (2 it.) 1.9 16.0 21.2 0.2 5.7 21.5

(5 it.) 0.8 9.7 26.1 0.0 2.8 16.9

(8 it.) 1.6 11.9 31.0 0.0 2.2 16.3

Normal and shouted speech

FFT 1.4 9.6 14.9 0.0 2.6 12.2

LP 0.8 9.1 14.2 0.0 3.4 13.5

GMLP-0 (2 it.) 0.5 7.6 12.9 0.0 3.4 13.2

GMLP-H (2 it.) 0.8 9.2 11.9 0.0 2.6 12.3

GMLP-N (5 it.) 0.8 6.5 13.4 0.0 1.7 9.3

5. CONCLUSIONS

Mixture linear prediction was described and applied to speech spec-

trum analysis with a focus on noise robustness. Autoregressive pa-

rameters associated with two states of a mixture model were ini-

tialized to broadly characterize, respectively, the desired target sig-

nal and undesired, noisy components. Three such variants of the

proposed method were evaluated in additive-noise conditions, both

using an objective quality measure, the log-spectral distance, and

in a practical application, feature extraction for speech detection in

acoustic environment monitoring. The described method was able

to outperform conventional methods in both experiments. Within the

scope of the evaluations, it is therefore noted that the target state gen-

erally converges towards a useful all-pole model during the course of

EM re-estimation of the model parameters. While the results were

similar across different initialization methods, AR parameter initial-

ization and the number of training iterations were also observed to

have a potentially large effect on the resulting all-pole model. Ini-

tialization approaches are thus among the topics of future study, as

well as the structure of the mixture model, modifications to training

and the use of mixture-based linear prediction in new applications.
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[3] C. Magi, J. Pohjalainen, T. Bäckström, and P. Alku, “Stabilised

weighted linear prediction,” Speech Communication, vol. 51,

no. 5, pp. 401–411, 2009.

[4] R. Saeidi, J. Pohjalainen, T. Kinnunen, and P. Alku, “Tempo-

rally weighted linear prediction features for tackling additive

noise in speaker verification,” IEEE Signal Process. Lett., vol.

17, no. 6, pp. 599–602, 2010.

[5] J. Pohjalainen, R. Saeidi, T. Kinnunen, and P. Alku, “Extended

weighted linear prediction (XLP) analysis of speech and its

application to speaker verification in adverse conditions,” in

Proc. Interspeech, Makuhari, Japan, September 2010.

[6] S. Keronen, J. Pohjalainen, P. Alku, and M. Kurimo, “Noise

robust feature extraction based on extended weighted linear

prediction in LVCSR,” in Proc. Interspeech, Florence, Italy,

August 2011.

[7] D. Gowda, J. Pohjalainen, M. Kurimo, and P. Alku, “Ro-

bust formant detection using group delay function and stabi-

lized weighted linear prediction,” in Proc. Interspeech, Lyon,

France, August 2013.

[8] C. Ma, Y. Kamp, and L.F. Willems, “Robust signal selection

for linear prediction analysis of voiced speech,” Speech Com-

munication, vol. 12, no. 2, pp. 69–81, 1993.

[9] P. Alku, J. Pohjalainen, M. Vainio, A.-M. Laukkanen, and

B. Story, “Formant frequency estimation of high-pitched vow-

els using weighted linear prediction,” J. Acoust. Soc. Am., vol.

134, no. 2, pp. 1295–1313, 2013.

[10] J. D. Hamilton, Time Series Analysis, Princeton University

Press, 1994.

[11] C.-J. Kim, “Dynamic linear models with Markov-switching,”

Journal of Econometrics, vol. 60, pp. 1–22, 1994.

[12] J. D. Hamilton, “A new approach to the economic analysis of

nonstationary time series and the business cycle,” Economet-

rica, vol. 57, pp. 357–384, 1989.

[13] C. S.Wong andW. K. Li, “On amixture autoregressive model,”

Journal of the Royal Statistical Society. Series B, vol. 62, pp.

95–115, 2000.

[14] A.B. Poritz, “Linear predictive hidden Markov models and the

speech signal,” in Proc. ICASSP, Paris, France, May 1982.

[15] B.-H. Juang and L. R. Rabiner, “Mixture autoregressive hidden

Markov models for speech signals,” IEEE Trans. Acoustics,

Speech, Signal Process., vol. 33, no. 6, pp. 1404–1413, 1985.

[16] Y. Ephraim and W. J. J. Roberts, “Revisiting autoregressive

hidden Markov modeling of speech signals,” IEEE Signal Pro-

cess. Lett., vol. 12, no. 2, pp. 166–169, 2005.

[17] B. Mesot and D. Barber, “Switching linear dynamical systems

for noise robust speech recognition,” IEEE Audio, Speech,

Language Process., vol. 15, no. 6, pp. 1850–1858, 2007.

[18] P. Kenny, M. Lennig, and P. Mermelstein, “A linear predic-

tive HMM for vector-valued observations with applications to

speech recognition,” IEEE Trans. Acoustics, Speech, Signal

Process., vol. 38, no. 2, pp. 220–225, 1990.

[19] M. M. H. El Ayadi, M. S. Kamel, and F. Karray, “Speech emo-

tion recognition using Gaussian mixture vector autoregressive

models,” in Proc. ICASSP, Honolulu, Hawaii, April 2007.

[20] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its

application to parameter estimation for Gaussian mixture and

hidden Markov models,” Tech. Rep., International Computer

Science Institute/University of California at Berkeley, 1998.

[21] A. P. Dempster, N. M. Laird, and D. B.Rubin, “Maximum like-

lihood from incomplete data via the EM algorithm,” Journal of

the Royal Statistical Society. Series B, vol. 39, pp. 1–38, 1977.

[22] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech

Signals, Prentice-Hall, 1978.

[23] A. H. Gray and J. D. Markel, “Distance measures for speech

processing,” IEEE Trans. Acoustics, Speech, Signal Process.,

vol. 24, no. 5, pp. 380–391, 1976.

[24] F. de Wet, B. Cranen, J. de Veth, and L. Boves, “A comparison

of LPC and FFT-based acoustic features for noise robust ASR,”

in Proc. Eurospeech, Aalborg, Denmark, September 2001.

[25] J. Pohjalainen, T. Raitio, S. Yrttiaho, and P. Alku, “Detection

of shouted speech in noise: human and machine,” J. Acoust.

Soc. Am., vol. 133, no. 4, pp. 2377–2389, 2013.

[26] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and

A. Sarti, “Scream and gunshot detection and localization for

audio-surveillance systems,” in Proc. IEEE Int. Conf. AVSS,

London, UK, September 2007.

[27] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “An adap-

tive framework for acoustic monitoring of potential hazards,”

EURASIP J. on Audio, Speech, and Music Processing, 2009.

[28] R. Radhakrishnan, A. Divakaran, and P. Smaragdis, “Audio

analysis for surveillance applications,” in Proc. IEEE WAS-

PAA, New Paltz, USA, October 2005.

[29] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers,

C. Müller, and S. Narayanan, “Paralinguistics in speech and

language - state-of-the-art and the challenge,” Comput. Speech

Lang., vol. 27, pp. 4–39, 2013.

[30] A. Härmä, M. F. McKinney, and J. Skowronek, “Automatic

surveillance of the acoustic activity in our living environment,”

in Proc. IEEE Int. Conf. Multimedia and Expo (ICME 2005),

Amsterdam, The Netherlands, July 2005.

[31] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based

voice activity detection,” IEEE Signal Process. Lett., vol. 6,

no. 1, pp. 1–3, 1999.

[32] T. Kinnunen and P. Rajan, “A practical, self-adaptive voice

activity detector for speaker verification with noisy telephone

and microphone data,” in Proc. ICASSP, Vancouver, Canada,

May 2013.

[33] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Pro-

cessing, Prentice Hall PTR, 2001.

[34] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang, “A new initial-

ization technique for generalized Lloyd iteration,” IEEE Signal

Process. Lett., vol. 1, pp. 144–146, 1994.
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