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ABSTRACT 

 

In this work, long audio alignment systems for Spanish and 

English are presented in an automatic subtitling scenario. 

Pre-recorded contents are automatically recognized at 

phoneme level by language-dependent phone decoders. A 

dynamic-programming alignment algorithm finds matches 

between the automatically decoded phones and the ones in 

the phonetic transcription for the content’s script. The 

accuracy of the alignment algorithm is evaluated when 

applying three non-binary scoring matrices based on phone 

confusion-pairs from each phone decoder, on phonological 

similarity and on human perception errors. Alignment 

results with the three continuous-score matrices are 

compared to results with a baseline binary matrix, at word 

and subtitle levels. The non-binary matrices achieved clearly 

better results. Matrix samples are given in the project’s 

website. 

 

Index Terms— Long audio alignment, phonological 

similarity matrices, perceptual confusion matrices, 

automatic subtitling. 

 

1. INTRODUCTION 

 

Due to the huge subtitling demand generated by current 

accessibility policies, broadcasters and subtitling companies 

are looking for solutions to automate subtitling.  

Speech processing technologies are proving helpful in 

speeding up the subtitling process. A widespread approach 

for subtitling pre-recorded contents exploits existing text 

transcriptions for the content (scripts). Under this approach, 

automatic speech-text alignment systems recover word-level 

time-codes from the audio for the scripts. Although speech-

text alignment is an interesting approach for automatic 

subtitling, aligning long audio signals is challenging, given 

memory demands, processing time, and the decreased 

reliability of the commonly employed Viterbi search 

algorithm when aligning long sequences. 

For the present work, the successful system for long 

audio alignment described in [1] was taken as the basis. 

Their alignment method was based on Hirschberg’s 

algorithm [2], using a binary matrix for scoring alignment 

operations. Our study deployed a similar algorithm, but 

using three types of non-binary scoring matrices, based on 

different phoneme-relatedness criteria. Alignment systems 

were developed for Spanish and English.  

The paper is structured as follows. Section 2 looks at 

related work in long audio alignment and in phoneme-

relatedness measures. Section 3 presents our system, and 

Section 4 describes the similarity matrices created. Section 5 

discusses evaluation methods and results. Section 6 presents 

conclusions and suggestions for future work. 

 

2. RELATED WORK 

 

Speech-text alignment has been extensively studied. Many 

studies follow work by [3], where forced alignment was 

turned into a recursive speech recognition process, 

iteratively adapted to the content. Dynamic programming 

was used to align the hypothesis text and the reference 

transcript at word level. Subsequent works proposed 

improvements to this system: [4], [5]. 

A different approach, which does not require adapting 

the models and vocabulary, is in [1]. They developed an 

aligner based on Hirschberg’s algorithm, a dynamic 

programming algorithm used in bioinformatics for genetic 

sequence alignment. They used a binary matrix to score 

alignment operations: insertions, deletions and substitutions 

had a cost of 1, while matches received a score of 0.  

Whereas [1] used binary matrices, our study tested  

non-binary scoring matrices, based on phone-confusion 

ratios in our phone decoder, on phonological similarity, and 

on phone confusion in human perception. Our phonological 

similarity metric was based on [6], where a metric was 

presented that outperformed previously existing measures, 

applied to the task of cognate alignment. The metric was 

also successfully employed in spoken document retrieval 

[7]. Regarding phone confusion in human perception, [8] 

provided phone confusion results for American English, 

using a phoneset that is very close to our aligner’s phoneset. 

 

3. LONG AUDIO ALIGNMENT SYSTEM 

 

The goal of an audio alignment system is to recover time-

codes from the audio for words in the audio’s script. To this 

end, our speech-text alignment system aligns two sequences 

of phonemes obtained from different sources. A language-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6321



dependent phone-decoder recognizes the phones and their 

time-codes from the audio. The decoder’s output usually 

contains mistakes due to common recognition errors. 

Besides, a grapheme-to-phoneme module translates the 

input transcript into the reference phoneme transcription. An 

alignment algorithm finds phoneme matches between the 

phones recognized by the phone-decoder and the reference 

phoneme transcription. Correctly aligned phonemes will 

receive the time-codes obtained by the phone-decoder. 

Phonemes are not always correctly aligned; substitutions, 

deletions and insertion errors may occur. Nonetheless, the 

results of this study suggest that the number of matching 

phonemes found by our aligner is sufficient to recover 

enough time-codes to create near-perfectly aligned subtitles. 

3.1. Phone recognition system 

 

The phone recognition systems were trained using HTK, a 

toolkit for building hidden Markov models. The acoustic 

models were based on a monophone model, with three left-

to-right emitting states using 32 Gaussian mixture 

components. The language models were bigram phoneme 

models. The parametrization of the signal consisted of 18 

Mel-Frequency Cepstral Coefficients plus the energy and 

their delta and delta-delta coefficients, using 16-bit PCM 

audios sampled at 16 KHz.  

The Spanish phone recognition system was trained and 

tested with 20 hours of audios from three databases; 

Albayzín [9], Multext [10] and records of clean-speech 

broadcast news contents. The contents were mixed and 

divided into training (70%) and test (30%) sets. Texts 

totaling 45 million words were crawled from national 

newspapers to train the language model. The Phone Error 

Rate (PER) for the Spanish phone-decoder was 40.65%. 

The English phone recognition system was trained and 

tested on the TIMIT database [11], which consists of 5 

hours and 23 minutes of speech data. 70% of the database 

was used for training, leaving the rest for testing. Texts 

totaling 369 million words, collected from digital 

newspapers, were used to train the language model. The 

PER for the English phone-decoder was 35.52%. 

3.2. Grapheme-to-phoneme transcriptors 

 

Two language-dependent grapheme-to-phoneme (G2P) 

transcriptors were developed for Spanish and English. The 

Spanish transcriptor was rule-based. It was inspired on the 

tool provided by López (www.aucel.com/pln/), and adapted 

to our phonelist. The English transcriptor was inferred from 

the Carnegie Mellon Pronouncing Dictionary 

(svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/) using 

Phonetisaurus (code.google.com/p/phonetisaurus/), a 

grapheme-to-phoneme framework driven by Weighted 

Finite State Transducers (WFST). The Spanish and English 

phonesets are available on our project’s website (see 

sites.google.com/site/similaritymatrices/). 

3.3. Algorithm for long sequences alignment 

 

For our study, Hirschberg’s algorithm was modified in two 

respects. (1) Given the sequences   {       } and 

Y {       } which have to be recursively divided at 

indexes xmid and ymid respectively, Hirschberg defined that 

xmid will always correspond to X’s middle index, i.e. 

round(length(X)/2). However, for sequence Y, when 

determining the ymid index with Hirschberg’s function, 

several candidate-indexes can arise. Our modification 

consists in always choosing as ymid the candidate-index that 

is closest to the middle of Y. (2) During the recursive 

application of the algorithm, when both sequences have a 

length of 1 and their phones do not match, a substitution 

operation is forced, in order to avoid excessive gaps. Both 

modifications were applied once their effectiveness was 

established.  

In our alignment algorithm, four edit-operations are 

allowed: matches, substitutions, deletions and insertions. 

The scores for the first two operations are defined by the 

scoring matrices (See Section 4), while deletions and 

insertions incur a gap penalty. Since each matrix-type tested 

has a different range of values, the gap penalties are also 

different for each matrix-type. In our binary matrix, the gap 

penalty was 2. For all other matrices, the penalty was a 

quarter of the matrix’ maximum value, following one of the 

practices for gap penalties referenced in [6].  

 

4. SIMILARITY MATRICES 
 

Our scoring matrices provide the alignment algorithm with 

phoneme-similarity information. Depending on the scoring 

matrix, the alignment will be different, since scores for 

phoneme matches and mismatches (substitutions) differ 

across matrices. We developed three types of matrices, 

applying different phoneme-relatedness criteria. These 

matrices can help the alignment algorithm consider 

mismatches between similar phonemes as possible correct 

substitutions. They also prevent substitutions between very 

dissimilar phonemes, which are unlikely to be correct. The 

phone-decoder error based matrix achieves these ends by 

providing information about the phone decoder’s phone 

confusion-pairs. The phonological similarity matrix is 

decoder-independent and estimates similarity based on 

common articulatory characteristics between phonemes. The 

perceptual matrix, also decoder-independent, reflects phone 

confusion-pairs in human perception. Its use is justified by 

the way the signal was parameterized: The frequency 

warping scale used for filter spacing in MFCC computation 

is the Mel scale, which was originally created through 

human perception experiments. Our project’s website 

provides samples for the three types of matrices. 
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Alignment results with the three matrix-types were 

compared to results with a baseline binary matrix where 

matches had a score of 1 and mismatches had a score of 0.  

 

4. 1. Phone-decoder error-based matrices 

 

Our phone-decoder error-based matrix was computed from 

the output of HTK’s HResults tool, when aligning the 

phonetic recognition and G2P transcription for sequences of 

ca. 25000 phonemes in Spanish and ca. 12700 phonemes in 

English. The matrix represents the percentage of times each 

phone in the phoneset was recognized correctly or 

misrecognized. Percentages were normalized to a 1-1000 

integer range. E.g. if 8.5% of the occurrences of /θ/ were 

misrecognized as /f/, the matrix shows a score of 85 for 

phoneme pair [θ, f]. For pairs where phonemes were never 

mistaken for each other, we stipulated a score of –500, i.e.  

½ × (0 – max({Score Range}), preventing substitutions 

between members of such phoneme pairs.  

 

4.2. Phonological similarity matrices 

 

The phonological similarity scores were based on the metric 

described by Kondrak [6] as part of a cognate alignment 

system. Phonemes are described with Ladefoged’s [12] 

multivalued features, and weighted according to their 

salience: the feature’s impact for similarity. Our feature set, 

feature and salience values are on our project’s website (see 

sites.google.com/site/similaritymatrices/). 
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Figure 1: Similarity function, based on Kondrak (2002) 

 

 Figure 1 shows our scoring function: σsub(p, q) yields 

the similarity score for segments p and q. Csub/100 is the 

maximum possible similarity score. Cvwl defines the relative 

weight of consonants and vowels. Values for Csub and Cvwl 

are set heuristically. Function diff(p, q, f) returns the 

difference between segments p and q for feature f. Feature-

set R is configurable. Finally, σskip(p) returns the penalty for 

insertions and deletions used in the aligner (see Section 3.3).  

We modified Kondrak’s original function, making it 

more suitable for audio alignment, and for coherence with 

our aligner. First, the definition of V(p) was modified. Note 

that, as Cvwl, approaches 0, scores for vowel matches 

become closer to scores for consonant matches, increasing 

the weight of vowels in alignment. Kondrak mentions that 

prioritizing consonant matches is desirable in cognate 

alignment. Nonetheless, for audio alignment we obtained 

slightly better results by assigning the same weight to all 

matches. This can be achieved in the original function by 

setting Cvwl = 0. However, as Cvwl approaches 0, 

substitutions between vowels and consonants become less 

clearly penalized by the matrix, which is undesirable. By 

adding the or-clause “or p = q” in the definition of V(p), we 

can give equal weight to all matches, while still setting  

Cvwl > 0, and thus still applying an extra penalty to 

vowel/consonant substitutions that is not applied to 

vowel/vowel substitutions.  

Further modifications were the following. First, adding 

a denominator of 100 to σsub, in order to keep Kondrak’s 

output range, but using integer feature values and avoiding 

decimals to reduce memory use. Second, redefining σskip, for 

coherence with the way the gap penalty is calculated (see 

Section 3.3) when aligning with the perceptual and 

decoding-error based matrices. 

The final modification was omitting a clause from the 

original function, which evaluates two-to-one phoneme 

alignments. These are not implemented in our audio aligner.  

We defined heuristically a Csub value of 3500, yielding a 

maximum possible similarity score of 35 (Csub/100), and a 

gap penalty of 9 for alignment: ceiling(|Csub/400|). 

 

4.3. Perceptual similarity matrices 

 

We created these matrices for English only. The scores were 

based on perceptual confusion matrices from [8]. They 

asked native speakers of English to identify 645 CV 

(ConsonantVowel) and VC syllables containing a phoneme 

from a 39-phoneme set (covering all of our phoneset but 

schwa), at signal-to-noise ratios (SNR) of 0, 8 and 16. Our 

scores reflect confusion percentages at SNR 16; the scoring 

matrix thus obtained yielded better results on our test-set 

than data at other SNR. 

We normalized the confusion percentages for each 

phoneme-pair into a 1-1000 range. For phoneme-pairs 

where no confusion had taken place, we stipulated a score of  

–500, i.e. ½ × (0 – max({Score Range}). 

 

5. EVALUATION AND RESULTS 
 
Our long audio alignment system was evaluated at word and 

subtitle level. The Spanish test-set (47,480 phonemes; 8,774 

words and 1,249 subtitles) was composed of clean-speech 

audios from films. By contrast, the English test-set (21,310 

phonemes; 4,732 words and 471 subtitles) consisted of  

non-clean speech from television audios, containing 

disfluencies, music, noise and overlapping speech.  

In addition, the English reference contained segments with 

imperfect transcriptions, missing subtitles for certain parts 

of the audio. Due to these difficulties, lower accuracy in 

English was expected and observed at all evaluation levels. 
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Matrix type 
Eval 

Level 
0 ≤0.1 ≤0.5 ≤1.0 ≤2.0 

Binary 

Baseline 

WL 14.15 57.82 72.68 76.20 79.02 

SL 10.57 45.24 73.34 94.96 100 

Phone-Decoder 

Error-Based  

(PDE) 

WL 23.34 82.28 94.42 95.99 97.21 

SL 18.01 66.85 87.99 98.96 100 

Phonological 

Similarity 

(PHS) 

WL 23.00 82.16 93.65 95.58 96.92 

SL 17.85 66.53 87.99 98.80 100 

Table 1: Spanish word-level (WL) and subtitle-level (SL) 

alignment accuracy. Percentage of words and subtitles aligned 

within each deviation range from reference. 

 

 

Matrix type 
Eval 

Level 
0 ≤0.1 ≤0.5 ≤1.0 ≤2.0 

Binary 

Baseline 

WL 0.28 4.81 19.02 29.67 43.20 

SL 0.21 4.03 36.94 84.08 100 

Phone-Decoder 

Error-Based  

(PDE) 

WL 2.20 25.73 52.53 65.35 76.31 

SL 0.42 11.46 48.83 88.32 100 

Phonological 

Similarity  

(PHS) 

WL 1.97 24.23 49.81 62.71 73.89 

SL 0.42 8.28 43.10 85.99 100 

Perceptual 

Error-Based 

(PCE) 

WL 1.89 23.76 50.54 63.93 76.44 

SL 0.21 8.92 47.98 88.32 100 

Table 2: English word-level (WL) and subtitle-level (SL) 

alignment accuracy. Percentage of words and subtitles aligned 

within each deviation range from reference. 

Tables 1 and 2 present the alignment accuracy at word 

and subtitle level for Spanish and English. We adopted the 

evaluation method from [3] and [1]. The cumulative 

percentage of correctly aligned words within several 

deviation ranges was recorded: Column 0 presents the 

percentage of perfectly aligned words, column ≤0.1 means 

the percentage of words correctly aligned within a 

maximum deviation of 0.1 sec, etc. To obtain the actual 

word-level time-codes for the reference files, a forced 

alignment was done subtitle by subtitle using the reference 

material, which contained subtitles manually created by 

professional subtitlers, as well as their time-codes. For 

subtitle-level evaluation, the deviation of the subtitle’s first 

and last word compared to the reference was measured. 

The most salient conclusion supported by the results is 

that using matrices based on phone-decoder errors (PDE), 

phonological similarity (PHS) or perceptual errors (PCE) 

significantly improved alignment accuracy compared to 

using the binary matrices. The improvements are noticeable 

at all deviation ranges. 

For both languages, the best alignment accuracy was 

obtained using the PDE matrix. This was expectable, since 

the matrix is based on phone confusion-pairs from the 

phone-decoder used by the aligner.  

In Spanish, with the PDE matrix, accuracy gains of 21 

and 14 percentage points (ptp) were obtained at subtitle-

level compared to the binary matrix, at 0.1 and 0.5 second 

deviations respectively. Considering that 0.1 and 0.5 sec. are 

acceptable deviations for subtitling applications, these gains 

represent a positive impact at an actual application level. 

Improvements were even higher in word-alignment 

accuracy: 37 ptp and 21 ptp at the same deviation ranges.  

For English, alignment accuracies are lower, given 

difficulties posed by the test-set. However, the 

improvements with the PDE matrix compared to the binary 

matrix are also clear: 7 ptp and 12 ptp at subtitle level with 

0.1 and 0.5 second deviations respectively, while at word 

level accuracies reached improvements of 21 ptp and 33 ptp 

for the same deviation ranges. 

Regarding the PHS and PCE matrices, their alignment 

accuracy was close to the accuracy obtained with the PDE 

matrix. This finding suggests that the performance of 

decoder-independent matrices can get close to the 

performance of decoder-dependent matrices. Also note that, 

even if both PHS and PCE matrices obtained similar results, 

there was a small trend for the PCE matrix to be more 

accurate. The nature of the PCE matrix, more closely-related 

to the signal parametrization than the PHS matrix, could 

explain these minimal accuracy differences. 

 

6. CONCLUSIONS AND FUTURE WORK 

 

Several scoring matrices, based on different phoneme-

relatedness criteria, were tested for aligning long audios 

with Hirschberg algorithm, and found to improve alignment 

accuracy compared to a binary matrix. As expectable, the 

matrix based on phone-decoder errors achieved the most 

accurate alignment results, while the matrices based on 

phonological similarity and perception errors also obtained 

clear improvements in alignment accuracy. Improvements 

were observed at word and subtitle level for Spanish and 

English, even if the English test-set posed serious 

difficulties. Thus, the effectiveness of the matrices under 

adverse conditions was also established.  

Accuracy does not only depend on the alignment 

algorithm and the scoring matrices, but also on the 

performance of the phone decoders. Improving their 

robustness, by using a larger training-set or adapting models 

to the content or domain, will increase alignment accuracy.  

Other future work would be extending the system to 

more languages. For this study, a matrix based on perceptual 

errors was created for English, but not for Spanish.  

Regarding Hirschberg’s algorithm, it sometimes offers 

more than one possible optimal alignment. In this study, we 

forced the algorithm to compute just one solution. 

Considering the different possible solutions, and defining 

criteria to choose among them could be an interesting study.  
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