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ABSTRACT

We propose the energy-constrained minimum-variance response
(ECMVR) filter to perform robust spectral estimation of vowels. We
modify the distortionless constraint of the minimum-variance distor-
tionless response (MVDR) filter and add an energy constraint to its
formulation to mitigate the influence of noise on the speech spec-
trum. We test our ECMVR filter on a vowel classification task with
different background noises at various SNR levels. Results show that
vowels are classified more accurately in certain noises using MFCC
and PLP features extracted from the ECMVR spectrum compared to
using features extracted from the FFT and MVDR spectra.

Index Terms: frequency estimation, MVDR, robust signal process-
ing, spectral estimation.

1. INTRODUCTION

Spectral modeling is a fundamental tool in speech processing and
is a key building block in many applications, ranging from phonetic
speech analysis to speech coding and automatic speech recognition
(ASR). Good modeling of the speech spectrum allows one to cap-
ture properties of speech, such as pitch (fundamental frequency of
the glottis) and formant frequencies (resonant frequencies of the vo-
cal tract) across various speech sounds and speaking conditions. The
classical approaches are based on (short time) Fourier analysis or
Linear Prediction (LP) models. These methods, however, are sensi-
tive to noise in the signal; real-world speech processing often has to
contend with noise corruption.

The computation of the (Fourier) speech spectrum is an essential
step in the early part of the processing pipeline in contemporary ASR
systems, notably in the calculation of the popular Mel frequency cep-
stral coefficients (MFCCs) [1]. Limitations in the estimation of the
(noisy) speech spectrum can influence the quality of the features,
such as MFCCs, that are estimated from it. Likewise, Linear Pre-
diction, a powerful speech modeling approach at the heart of many
speech coders, approximates the speech spectrum with the frequency
response of an all-pole filter [2]. However, the filter tends to over-
shoot the peaks of the formant frequencies, especially for female and
child speech. Furthermore, LP-based cepstra are sensitive to noise,
thus degrading the performance of an ASR that relies on LPC for
spectral estimation [3]. Finally, perceptual linear prediction (PLP),
yet another popular speech feature extraction method for ASR, re-
lies on both a Fourier analysis step followed by linear prediction
modeling [4]. As with MFCC and LPC features, PLP features can
also benefit from improved spectral estimation. In summary, given
the fundamental nature of speech spectral estimation across various
applications, it is desirable to make the basic underlying spectral es-
timation more robust to noise.

Kleiner et al. tackled the problem of robust spectral estimation
of time-series data in [5]. Motivated by overcoming the sensitivity
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of second-order statistics to outliers, they developed two methods
of spectral estimation to be used in conjunction with a prewhitening
filter. The first method is a robust filtering algorithm using robust
estimates of the autoregressive/linear predictor coefficients and an
estimate of the innovation variance to obtain residual coefficients,
which are used in the autoregressive model to compute an estimate
of the data. The second approach is to fit an autoregressive model
to the data and operate on the resulting residuals. They point out
that outliers in the data, even minor ones, can significantly alter the
spectrum because their effect may be large relative to the power in
small peaks. This has important implications for spectral estimation
of vowels because formant frequencies, which appear as peaks in the
spectrum, distinguish one vowel from another. Therefore, noise in
the speech may obscure the formant frequencies and hinder analysis,
such as vowel classification, or degrade the performance of a system,
such as an ASR, that relies on non-robust spectral estimation.

Murthi et al. proposed the minimum-variance distortionless re-
sponse (MVDR) filter to improve the modeling of the spectral enve-
lope of speech [6]. Its formulation prevents overestimation of spec-
tral peaks, making it better for estimating the spectrum of medium-
to high-pitched speech. As with LPC, noise affects proper spec-
tral estimation of speech using MVDR. We propose a reformulation
to MVDR that reduces the influence of noise in frequency regions
outside of human speech and constrains the energy of the filter to
reduce the effect of additive noise on the speech. This way, we draw
on MVDR’s ability of undistorted spectral estimation while reducing
the effects of noise on spectral estimation of speech.

The paper is organized as follows. Section 2 describes the
MVDR formulation and describes our proposed modifications to
MVDR to create the energy-constrained minimum-variance re-
sponse (ECMVR) filter. Section 3 shows results from an isolated
vowel classification task when we subject the vowels to different
noises at different SNR levels. In Section 4, we discuss the results
of the classification task and point out the noises in which ECMVR
works well and the ones where the performance is not satisfactory.
Finally, we state our conclusions and future work in Section 5.

2. ENERGY-CONSTRAINED MINIMUM-VARIANCE
RESPONSE

MVDR has its roots in array signal processing, where one forms a
beam at a certain angle to receive signals without distortion at that
angle and suppress signals arriving at the microphone array from
other angles [7]. Murthi et al. applied this concept to model de-
sired frequencies of a signal [6]. They created a filter that passes a
certain frequency of interest without distortion and suppresses the
other frequencies of the signal. This property is useful for finding
the formant frequencies in a speech segment, and thus enables bet-
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ter vowel recognition (speech sounds with a rich formant structure)
when extracting features from the MVDR spectrum.

MVDR constrains an FIR filter h[n] to have a unity gain at a
frequency of interest wy. Namely,

‘H (ej“”“)) = i: h[n}efjw’”‘"

=1. 1

This is the distortionless constraint, and it can be written in vec-

tor form as |vH(wk)h| = 1, where h = [h[0] - - h[N — 1]]T and
) ) T

v(wy) = [1 eion -..eMW—l)] . The MVDR filter with a unity

gain at wy, is obtained by solving

ﬁwk = arg min hfk Rh,, subjectto
h
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where R is the N x N Toeplitz autocorrelation matrix of the input
signal. The solution to this constrained optimization problem is
- R 'w(w
how = ST R T ®
vH (wi) R~ (wi)
With this ke, «» one can compute the MVDR power spectrum at wy
as

P(wy) = huy, Rhu, )
1
= v (W) R w(wr)

We note that it is not necessary to calculate a different flwk
for each wy. Instead, we form a N x N matrix V =
[v(wo) v(wr)---v(wn-1)] and compute the MVDR power spec-
trum for all frequencies as

1

Pl)= -
() diag(VIR-1V)’

where diag(X) returns a vector of the diagonal elements of a square
matrix X, and the division is element-wise.

Noise adds extra energy to the signal and introduces frequency
components outside what is deemed as meaningful range for speech
intelligibility, typically covering the first three formants. Schafer
and Rabiner show that the first three formants range from 200 Hz
to 3000 Hz [8]. To combat noise outside of this frequency range,
we changed the distortionless constraint from an all-pass filter to a
band-pass filter. This way, the MVDR filter passes frequencies of
interest undistorted and attenuates out-of-band frequencies. Thus,
we modify the distortionless constraint to [v* (wi )b, | = |A(wr)],
where A(w) is a band-pass filter with a passband from 200 Hz to
4000 Hz. The formulation is general; the values can be adjusted
based on the frequency range of interest. To deal with noise within
the frequency band, we impose an energy constraint on the MVDR
filter to prevent noise from adding too much energy to the spectrum.
We formulate the energy constraint as g h,, = pu,, where g is
a vector of coefficients that tries to approximate the MVDR filter
coefficients h.,, . We use this constraint as an approximation for the
true energy of the filter hfk h., = B, because we want to keep
the MVDR formulation linear in h.,,, . We solve for 3., as follows:

®

Buy, = 9" hey, (6)
- %gHv(wk)vH(wk)hwk (7)
= g™ (@) A) ®)
= AP ©

where N is the length of the filter. We use Parseval’s theorem in
Equation 7 and substitute the constraint v (wi)he, = A(ws)
in Equation 8. We approximate g v(wy,) with A*(wy) in Equa-
tion 9 because we want g to approximate h.,, as closely as possible.
Hence, we set g to be the impulse response of A(w). In our experi-
ments, A(w) is a least-squares FIR filter with a passband of 200 Hz
to 4000 Hz and a filter length of N = 24. In summary, the band-
pass constraint tries to assign a certain amount of energy to each
frequency while the total energy constraint limits the amount of en-
ergy given to all frequencies. With these constraints, we solve for
the ECMVR filter to get

i _ (08Re — Ay, VRe) R~ v(ws) — (Ao, Ry — agRV)R~g
“e gRg x VRv — gRv x VRg

10)
where o = |A(wi)|, gRg = g¥R™'g, vRg = v" (wx)R™'g,
vRv = v (wp)R™ v(wy), and gRv = g R~ w(ws). We solve
for the ECMVR power spectrum at wy, to get

P(wi) = hoy Rho, (11)
1
X .
|gRg x VRv — gRv x vRg|?

For comparative illustration of the ECMVR spectrum with the
FFT and MVDR spectra, we calculated these spectra for one 20-ms
frame in the middle of three vowels: ‘“aa”, “iy”, and “uw”. The
left column of Figure 1 shows these spectra for the clean vowels
and the right column shows them for the same vowels with additive
0 dB speech babble. Speech babble has energy in a similar frequency
range as speech and also has formant frequencies. Thus, speech bab-
ble can considerably alter the speech spectrum and obscure impor-
tant details about the speech, such as the formants. When comparing
the clean and noisy spectra in Figure 1, one can see that the FFT
and MVDR spectra are affected by the speech babble, whereas the
ECMVR spectrum is affected relatively less. Therefore, features of
noisy signals extracted from the ECMVR spectrum, such as MFCC
or PLP, will better match the features extracted from the clean sig-
nals. This property could lead to better ASR performance. Also, one
can see that the formant frequencies are more clearly shown in the
MVDR and ECMVR spectra than in the FFT spectrum. This means
that these spectra can be useful in speech analysis, such as analyzing
formants and classifying vowels.

3. VOWEL CLASSIFICATION EXPERIMENT

To test and analyze the performance of ECMVR, we ran an isolated
vowel classification experiment. Since the focus of the proposed
model is spectral modeling, analysis of vowels provides an ideal test
study. We obtained vowels from the TIMIT database. We chose
the TIMIT database because it is phonetically balanced, provides
phoneme-level ARPAbet annotations, includes time stamps for the
onset and offset of the phonemes, and is widely used for phoneme
classification experiments. Moreover, the data is clean, offering
good references for systematic comparisons against various noisy
versions. There are 15 monophthong and diphthong vowels in the
(American English) ARPAbet. We extracted these vowels from the
TIMIT sentences. We windowed each vowel segment with a 20 ms
Hamming window with 10 ms shift and calculated the FFT, MVDR,
and ECMVR spectra of each windowed frame. From these spectra,
we extracted 13-dimensional MFCC and PLP features and calcu-
lated the delta and delta-delta features. We did not use energy for the
first MFCC coefficient. For comparison purposes, we also extracted
the LP coefficients. We normalized the features using a diagonal
covariance matrix.
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Fig. 1: Male speaking vowels
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r) in clean condition (left column) and O dB speech babble (right
column). Each vowel is shown in the FFT spectrum (a,b,g,h,m,n),
MVDR spectrum (c,d,i,j,0,p), and ECMVR spectrum (e,f.k,l,q,r).

We classified the features using K Nearest Neighbors (KX NN).
We extracted training features from clean vowels in TIMIT’s train-
ing set. We extracted testing features from vowels in TIMIT’s test-
ing set, to which we added white noise, pink noise, car interior noise,
and speech babble from the NOISEX database at 5 dB and 0 dB SNR
levels. Thus, we performed classification with mismatched features
because of the different noise conditions between training and test-
ing vowels and because the same speaker does not appear in both the
train and test sets. We performed a 10-fold cross-validation on the
test set, using a 80%/20% split for each phoneme in the test set. In
each fold, we found the K that maximized the weighted classifica-
tion accuracy of the features from ECMVR, and we used this K to
determine the weighted accuracy on the held-out set. For compar-
ison purposes, we also computed the accuracy for clean vowels in
the test set (matched condition). Figure 2 shows the mean weighted
vowel classification accuracy for female speakers in different noise
conditions using MFCC features. Figure 3 shows the same plots for
male speakers. Figure 4 shows the mean weighted classification ac-
curacy for female speakers when extracting PLP features from the
different spectra. Figure 5 shows the same information for male
speakers.
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Fig. 2: Weighted classification accuracy with MFCC features for
female speakers in different noises and SNRs of (a) 5 dB and (b)
0 dB.
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Fig. 3: Weighted classification accuracy with MFCC features for
male speakers in different noises and SNRs of (a) 5 dB and (b) 0 dB.
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Fig. 4: Weighted classification accuracy with PLP features for fe-
male speakers in different noises and SNRs of (a) 5 dB and (b) 0 dB.

Unlike [9] and [10], we do not do dimension reduction on
the features, use the context of surrounding phonemes, or perform
speaker normalization in this classification experiment. We also do
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Fig. 5: Weighted classification accuracy with PLP features for male
speakers in different noises and SNRs of (a) 5 dB and (b) 0 dB.

not use a language model to constrain the vowel classification, as is
done in [11]. These techniques will most likely improve classifica-
tion performance, but we did not do these because the focus of this
paper is on robust spectral estimation, not phoneme classification.
However, we intend to follow up on this work with large scale ASR
experiments that take into account acoustic and language context.

We used the Wilcoxon rank-sum statistical test, a non-
parametric version of the Student’s T-test, to determine if the accu-
racy results for ECMVR are statistically significantly better than the
results from the other spectra. For the MFCC features, the accuracy
for ECMVR is significantly better at the 95% level than the accura-
cies for the other spectra in white, pink, and babble noises. For the
PLP features, ECMVR performed significantly better than MVDR in
speech babble and car interior noise but worse than MVDR in white
and pink noises, both at the 95% level.

4. DISCUSSION

The idea behind doing the vowel classification experiment with mis-
matched conditions was to determine how well the ECMVR spec-
trum can reduce feature mismatch. The more similar the estimated
spectra of a given phoneme in clean and noisy conditions, the more
similar the extracted features will be, thereby reducing feature mis-
match and improving classification performance. For MFCC fea-
tures, one can see in Figures 2 and 3 that ECMVR boosted the
classification accuracy over the other spectra. Moreover, ECMVR
performed consistently well for a wide range of noise types: wide-
band, such as white and pink noises; narrowband, such as car interior
noise; and non-stationary, such as speech babble. This suggests that
ECMVR can improve spectral estimation of speech in a variety of
noisy situations.

For PLP features, one can see in Figures 4 and 5 that the
classification accuracies of vowels from MVDR-PLP features were
higher than LPC features, especially for female speakers. This
result corroborates the claims in [3] and [6] that MVDR models
the speech spectrum better than LPC, particularly for high-pitched
speech. ECMVR boosted the classification accuracies for speech
babble and car interior noise with PLP features but decreased the
classification performance in white and pink noises. White and pink
noises have energy at all frequencies in the spectrum. To meet the
energy constraint, the ECMVR filter sometimes adds the noise en-
ergy into passband region of the ECMVR spectrum if the energy in
the speech signal is too low (remember that the modified distortion-
less constraint created a band-pass filter from 200 Hz to 4 kHz). This
addition shows up as ripples in the passband region of the spectrum.
Figure 6 shows an example of the ripples in the ECMVR spectrum
due to white noise. Unlike MFCC, PLP does equal-loudness preem-
phasis that boosts frequencies from 400 Hz to 1200 Hz [4]. The
equal-loudness preemphasis further exaggerates the ripples. This
results in a mismatch between the clean and noisy spectra, espe-
cially in the higher frequencies, leading to poorer classification per-

formance. This effect is more pronounced in female speakers be-
cause the higher fundamental frequency of the speech shows up as
harmonic peaks in the spectrum, which exaggerates the ripples even
more.
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Fig. 6: ECMVR spectra for a female speaking vowel “ae” in clean
condition (top) and 0 dB white noise (bottom). The bottom figure
shows the ripples that white noise introduces into the ECMVR spec-
trum, causing a deviation between the clean and noisy spectra and
increasing feature mismatch.

5. CONCLUSION

We have presented the ECMVR filter for robust spectral estimation
of speech in the presence of noise. We evaluated its performance on
modeling and classifying vowels from noisy audio. We modified the
distortionless constraint of the MVDR filter into a band-pass filter
to handle noise at frequencies outside the range of typical human
speech and added an energy constraint to handle noise at frequencies
within this range. ECMVR produces spectra of noisy speech that
closely matches the clean spectra. Using ECMVR in the front-end of
an ASR system can improve overall ASR accuracy by reducing the
mismatch between features in the noisy test set and the clean train
set. Preliminary experiments on isolated vowel classification show
that features extracted from the ECMVR spectrum classify vowels
better than FFT-based MFCC. For PLP features, the performance
was improved for certain noise types while degraded for others; this
is attributed to the nonlinear transformations of the signal in the PLP
processing.

To further improve our method, we will investigate filtering the
autocorrelation matrices R to see if information in the time domain
can improve ECMVR. We will reformulate our energy constraint
to deal with low SNR speech in broadband noise. We will explore
using a perceptually-motivated filter in place of the band-pass filter
constraint, like the equal-loudness filter used in PLP. Additionally,
we will fine tune our approach for continuous phoneme classification
and apply it to a full-fledged ASR system.
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