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ABSTRACT

Acoustic event detection is an important step for audio con-

tent analysis and retrieval. Traditional detection techniques

model the acoustic events on frame-based spectral features.

Considering the temporal-frequency structures of acoustic

events may be distributed in time-scales beyond frames, we

propose to represent those structures as a bag of spectral

patch exemplars. In order to learn the representative exem-

plars, k-means clustering based vector quantization (VQ)

was applied on the whitened spectral patches which makes

the learned exemplars focus on high-order statistical struc-

ture. With the learned spectral exemplars, a sparse feature

representation is extracted based on the similarity measure-

ment to the learned exemplars. A support vector machine

(SVM) classifier was built on the sparse representation for

acoustic event detection. Our experimental results showed

that the sparse representation based on the patch based exem-

plars significantly improved the performance compared with

traditional frame based representations.

Index Terms— Sparse representation, acoustic event de-

tection, vector quantization, support vector machine.

1. INTRODUCTION

Acoustic event detection is an important step for audio con-

tent analysis and retrieval [1, 2, 3]. The purpose for acous-

tic event detection is to classify the audio stream with their

semantic categories, and locate the time periods when they

occur. The detection of acoustic event takes two steps, one

is feature representation, and the second is classifier model

training which is used for classification. In most acoustic

event detection systems, as used in automatic speech recog-

nition (ASR), the Mel frequency cepstral coefficient (MFCC)

is used as feature representation. The hidden Markov model

(HMM) and support vector machine (SVM) are the two most

popularly used models for classifiers [4, 5, 6].

Extracting representative features is essential for pattern

recognition tasks. In most studies, classifier modeling for

acoustic event detection (either HMM or SVM) is trained

with frame based feature representations (e.g, 20 ms frame

length) [3, 4, 5]. In ASR, the frame based acoustic features

can be mapped to some intermediate labels before it is fi-

nally mapped to utterances, such as from phones to sylla-

bles or words. However, in acoustic event detection, we do

not have knowledge of such kind of intermediate labels. Di-

rectly mapping the frame based representation to their seman-

tic categories is not suitable for the acoustic event detection

task. In the meanwhile, acoustic events have well organized

temporal-frequency structures spanned in many continuous

frames (as spectral patches). These temporal-frequency struc-

tures are representative features for the underlying acoustic

event sources which can be regarded as parts or sub-parts ex-

emplars for acoustic events. In this study we try to automat-

ically learn these temporal-frequency structures and form a

bag of spectral exemplars to represent acoustic event patterns.

Based on the learned spectral exemplars, a sparse feature rep-

resentation is extracted based on the similarity measurement

to the exemplars. The new representation can be regarded as

a new type of intermediate representations of acoustic events.

The idea of using spectral patch based representation

for acoustic event detection has already been proposed [7].

In their work, a nonnegative matrix factorization (NMF)

learning algorithm was applied on spectral-temporal features.

However, learning directly on spectral patches may only

explore representations dominated by the second-order statis-

tical structure. Our work is different from theirs. Inspired by

the work in image processing [9], a simple k-means vector

quantization (VQ) is used to learn spectral patch exemplars.

In addition, before applying the VQ, a whitening process is

applied to remove the second-order statistical structure in

the spectral patches. In this case, the learned exemplars are

much more representative for patterns with high-order statis-

tical structure than using the second order statistic structure.

Based on the exemplars, a sparse representation is constructed

which is used for modeling and classification.

2. SPARSE FEATURE EXTRACTION BASED ON A
BAG OF EXEMPLARS OF SPECTRAL PATCHES

In this section, we introduce how the bag of exemplars of

spectral patches for acoustic events is learned, and how the

sparse representation feature is extracted based on the learned

exemplars.
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Fig. 1. Learning bag of exemplars of spectral patches.

2.1. Learning a bag of exemplars of spectral patches

Since the acoustic event pattern information is distributed in

long-term temporal-frequency structure rather than in frame

based short-term structure, we learn the pattern structure from

spectral patches which is similar as we used before [13, 14].

The whole processing procedures are shown in Fig. 1. In

this figure, the first step is spectral patch extraction from Mel

band spectra. For simplicity, a uniform segment strategy is

used for spectral patch selection in this study. All spectral

patches are selected randomly from any time location in the

spectrum of a training data set. The training feature vectors

are created from all the training patches (by concatenating all

frames in one patch as one feature vector). The second step as

shown in Fig. 1 is contrast normalization. Similarly as used

in image processing for local brightness and contrast normal-

ization, each spectral patch is contrast normalized to remove

the difference of the dynamic range caused by absolute den-

sity among patches. The contrast normalization is done as

following:

x̃ =
x − mean (x)√

var (x) + εc

, (1)

where x is the spectral patch vector (concatenating frame vec-

tors to be a long vector), mean(.) and var(.) are the mean and

variance operators, respectively. εc is a regularization param-

eter to make sure not to amplify the noise structure (set as 1 in

this study). In exemplar learning, it is possible to learn only

the correlation information if the data has strong correlation

structure. This may result in weak representation power of the

learned exemplars. In order to make exemplars span a good

representative space with high order statistical structure, the

data is further whitened for the third step as shown in Fig. 1.

Principal component analysis (PCA) based whitening can be

used to whiten the data. But the whitened data is represented

in the PCA projection space. In order to make the whitened

data as close as to the original input space, a zero-phase com-

ponent analysis (ZCA) is used as follows [8, 9]:

x̂ = V (D + εwI)−1/2 VT x̃c, (2)

where V and D are the eigen vector and eigen value matrix of

the covariance matrix cov (x̃c), x̃c is the zero centered vector

of x̃, εw is the regularization parameter in whitening which

is used to reduce the effect of the eigen vectors with small

eigen values (set as 0.1 in this study). The whitened spectral

patches are used to learn the bag of exemplars. Many learning

algorithms are available for different purpose, for example,

sparse dictionary learning based on K-SVD [10], sparse dic-

tionary learning based on projected gradient algorithm [11],

or NMF algorithm. In this study, since our purpose is to learn

representative spectral patches of the data, a simple k-means

clustering which is widely used in vector quantization (VQ)

is adopted to learn the codebook.

2.2. Sparse representation based on the learned bag of
spectral exemplars

After learned the bag of exemplars, the signal can be repre-

sented based on the VQ. Traditionally, only one code vector is

picked up to represent each feature vector by finding the most

similar code in the codebook. In order to incorporate rich dis-

criminative information from all the learned exemplars, the

representation of one vector is based on the similarity mea-

surement to all the learned exemplars as following:

dy = [d1, d2, · · · , di, · · · , dM ]T , (3)

where M is the number of codewords. dy defines the similar-

ity distance between feature vector y and learned exemplars.

The similarity measurement can be defined with many types

of metrics, for example, Euclidian distance, Gaussian kernel

distance. In this study, an Euclidian distance based similar-

ity metric as di =
∥∥x̂ − ci

∥∥
2

is used where ci is the ith ex-

emplar in the learned codebook. Incorporating all exemplars

in representation may make the representation not robust and

less invariance to some distortions (e.g., noise or other distor-

tions). We think of using only dominant exemplars which are

with high similarity to the signal (small Euclidian distance)

for feature representation, i.e., sparse representation based on

similarity measurement as:

y = [y1, y2, · · · , yi, · · · , yM ]T

yi = max (0, λ ∗ mean (dy) − di) , i = 1, 2, · · · ,M
(4)

λ is sparsity control parameter. When λ = 1, it is the triangle

VQ representation as proposed in [9]. The meaning of Eq. 4

is to make the activities as zeros when the distance measure-

ments are larger than some ratio of an average threshold. This

representation can reflect the data pattern similarity structure

of the space expanded by exemplars with uncertainty across

multiple dominant exemplars.

3. TRAINING CLASSIFIERS

The sparse representation is in a high dimensional space,

which is not suitable to model using GMM, therefore the
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SVM classifier is used in this study. For convenience of anal-

ysis, a linear SVM is used [12]. Suppose we have training

data pairs as (zi, li), with i = 1, 2, ..., N , where li is the label,

and zi is the sparse feature vector (in real implementation it

is extended from sparse feature yi for bias term). Multi-class

SVMs (M ) are built, and each SVM for each acoustic event

is constructed as one-against-all with parameter wj (the j-the

SVM) as:

minimize
wj

N∑

i=1

(
max

{
0, 1 − li

(
wT

j zi

)})2
+ α ‖wj‖2

2 (5)

The classification can be done by picking up the one which

gives the maximum value from all the SVMs as:

l̂ = arg max
j∈{1,2,···M}

wT
j z (6)

4. EXPERIMENTS

Our primary experiments were carried out on TED (technol-

ogy, entertainment, and design) talks audio data. In the TED

talks, besides speech, other acoustic events exist, for exam-

ple, applause, laugh, and music events. In order to classify the

underlying audio data streams to their event categories, man-

ually labels were made. We chose 50 TED talks as training

set, and 10 TED talks as testing set. On average, each TED

talk has about 15 minutes audio data with 16kHz sampling

rate. From the original manual event transcription, we col-

lected nine event categories with semantic labels as {speech,

applause, cough, laugh, audience, video, music, mix, other}.

Among them, mix event is a collection of overlapped acoustic

events, e.g., applause mixed with laugh. Other event is a col-

lection of events we have not defined well in our application,

such as some moving of chairs in a lecture, or natural envi-

ronment sounds. As a detection task, performance evaluation

metrics are related to false alarm rate and hitting rate. For

audio data, these metrics can be frame based, event based or

class-wise event based evaluation [1, 3]. In this study, frame

based evaluation is used, i.e., frame based Rec (recall), Pre

(precision) and F evaluation metrics are used which are the

same as defined in [5].

4.1. Event detection based on the HMM

Since we have manual transcription of the event categories, it

is natural to think of training HMM models for acoustic event

detection just the same as used in ASR. For comparison pur-

pose, we built an HMM event detection system based on HTK

[15] (the results will be used for comparison analysis in the

next section). Each event is modeled as a one state HMM (in

this case, it is equivalent to GMM modeling), 3 states HMM

with 16 GMMs for each state emission probability estima-

tion (ergodic state transitions). Frame based 39 dimensional

features including MFCC feature and log energy with their

Table 1. Event detection results based on HMM (%)
Model Rec Pre F

HMM-1 74.95 75.46 75.20

HMM-3 70.57 71.06 70.81
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Fig. 2. Exemplars learned for patch size 7 frames without (a)

and with (b) data whitening.

first and second order derivatives are used (CMN is applied

for feature normalization). Considering the time duration dif-

ference of frame based and patch based representations, we

smooth the label values to fit to the time window of patch

based processing. The performance results are shown in ta-

ble 1. In this table, HMM-1, HMM-2, and HMM-3 represent

the HMM models with 1, 2 and 3 states (with output prob-

ability), respectively. From table 1, we found that one state

HMM gave the best performance. We have thought to use

more states to capture the long temporal statistical feature in

HMM for event detection. However, from table 1, we found

that simply adding more states in HMM degrades the perfor-

mance.

4.2. SVM with sparse representation model

There are many factors may affect the performance of the pro-

posed representation. In this subsection we discuss the factors

of data whitening, codebook size (CS) of exemplars, spectral

patch size (PS) (i.e., how many frames to form one patch),

and sparsity of the representation (via changing parameter λ
in Eq. 4).

4.2.1. Data whitening

As we have discussed in section 2.1, data whitening makes

the learning focus on high-order statistical structure (the sec-

ond order statistical structure is removed by whitening). In

this sense, the learned exemplars should span the feature

space more uniformly which make the exemplars much more

representative than those learned dominated by correlation

structure. We show the learned exemplars of the spectral

patches with and without whitening in Fig. 2. In this fig-

ure, each learned exemplar is a small patch with size of 40

frequency bands by 7 frames ((a) and (b)). From this fig-

ure, we can see that, after the data is whitened (panel (b)),

the learned spectral patches show much more sharper local

temporal-frequency structures (e.g., harmonic structure and

frequency transitions). These structures can be regarded as
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Table 2. Effect of whitening with CS = 128 (%). CS: code

book size, PS: patch size.

Rec Pre F

No (PS=7) 56.85 57.17 57.01

Whitening (PS=7) 67.30 67.70 67.50

No (PS=15) 57.85 60.21 60.03

Whitening (PS=15) 74.12 74.58 74.35

Table 3. Effect of codebook size (PS = 7) (%)
CS 64 128 256 512 1024

Rec 63.15 67.30 71.09 72.24 73.44

Pre 63.52 67.70 71.51 72.69 73.90

F 63.33 67.50 71.30 72.47 73.67

enhanced feature to represent acoustic event patterns. We did

experiments to test the performance, and show the results in

table 2 (the sparsity control parameter is fixed as λ = 1).

From this table, we can see that with the whitening process,

the detection performance is significantly improved. There-

fore, in the following experiments, the data is with whitening

process.

4.2.2. Codebook size of exemplars

Intuitively, a large number of exemplars can be much more

accurate to represent the pattern acoustic space than a small

number of exemplars. We did experiments to test the effect

of increasing the codebook size of exemplars and show the

results in table 3 (fixed λ = 1 in Eq. 4). From this table, we

see a continuous improvement with increasing of the code-

book size of exemplars. However, with increasing of the num-

ber of exemplars, it is possible that non-representative exem-

plars encoding noise structure may result in less invariance

of the sparse representation. In the future, we will examine

the robustness of the representation when the number of ex-

emplars is increased to large values (e.g., more than several

thousands).

4.2.3. Spectral patch size

As we have discussed that long temporal window for spec-

tral patch should be helpful for catching rich event pattern

information spanning beyond several frames. However, spec-

tral patches with too long temporal window containing two or

more events may bring large pattern confusion both in repre-

sentation and model training. We did experiments to test the

selection of spectral patch size and show results in tables 4

and 5 (fixed λ = 1 in Eq. 4). From these tables, we can see

that increasing the spectral patch size could improve the per-

formance. Nevertheless, the improvements became smaller

when the spectral patch size became large, and the perfor-

mance decreased when the size of spectral patch is increased

Table 4. Effect of spectral patch size (CS = 256) (%)

PS 3 7 11 15 19 23

Rec 58.30 71.09 75.04 77.40 79.57 78.76

Pre 58.61 71.51 75.51 77.89 80.08 79.34

F 58.45 71.30 75.28 77.64 79.82 79.05

Table 5. Effect of spectral patch size (CS = 512) (%)

PS 3 7 11 15 19 23

Rec 60.63 72.24 75.92 78.98 80.44 79.82

Pre 60.96 72.69 76.40 79.49 80.95 80.52

F 60.79 72.47 76.16 79.24 80.69 80.17

Table 6. Effect of representation sparsity (CS = 256) (%)

λ 0.8 1.0 1.2 1.4 1.6 1.8

Rec 54.08 75.04 70.85 68.44 69.20 69.21

Pre 54.36 75.50 71.28 68.86 69.62 69.63

F 54.22 75.28 71.06 68.65 69.41 69.42

beyond some large values.

4.2.4. Representation sparsity

The representation sparseness can be controlled by varying λ
in Eq. 4. It can adjust the tradeoff between representation

accuracy and robustness. We did experiments with different

λ values, and showed the results in tables 6 and 7. From these

tables, we can confirm that the sparsity should be chosen in

a range to make the representation with good representation

accuracy while keeping robustness or discriminability.

5. CONCLUSION AND DISCUSSION

In this study, we learned the spectral patch exemplars by

using a k-means clustering algorithm on whitened spectral

patches. Considering the representation accuracy and robust-

ness, a sparse representation based on the learned spectral

exemplars was extracted. With the sparse representation, an

SVM classification system was built for acoustic event detec-

tion. Our experiments showed that the sparse representation

with an SVM classifier can outperform the traditional HMM

modeling on frame based representations (refer to tables 1, 4

and 5).

Recently, deep learning is widely used for speech and vi-

sion processing tasks for feature extraction and classification

[16]. The essential thing done by the deep learning is to ex-

tract powerful representative features [17]. As shown in sev-

eral studies, if the raw data is with a proper preprocessing,

good features that are competitive to those explored by deep

learning can be obtained by a single layer or shallow learning

[9]. The philosophy in all these feature learning is to disen-

tangle the underlying factors to represent patterns [17]. Both

the deep learning and the work in this study try to explore the

factors in spectral patches with uniformed segments. How-

ever, the factors may be distributed in non-uniformed spectral

segments. Finding such kinds of non-uniform acoustic repre-

sentation remains as our future work.

Table 7. Effect of representation sparsity (CS = 512) (%)

λ 0.8 1.0 1.2 1.4 1.6 1.8

Rec 65.33 75.92 73.12 71.91 70.34 70.07

Pre 65.70 76.40 73.57 72.35 70.78 70.50

F 65.51 76.16 73.34 72.13 70.56 70.28
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