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ABSTRACT

We study the problem of privacy-preserving computation of func-

tions of data that belong to users in a social network under the as-

sumption that users are willing to share their private data with trusted

friends in the network. We demonstrate that such trust relationships

can be exploited to significantly improve the tradeoff between the

privacy of users’ data and the accuracy of the computation. Under

a one-hop trust model we design an algorithm for partitioning the

users into circles of trust and develop a differentially private scheme

for computing the global function using results of local computations

within each circle. We quantify the improvement in the privacy-

accuracy tradeoff of our scheme with respect to other mechanisms

that do not exploit inter-user trust. We verify the efficiency of our

algorithm by implementing it on social networks with up to one mil-

lion nodes. Applications of our method include surveys, elections,

and recommendation systems.

1. INTRODUCTION

Several applications such as surveys, elections, and auctions require

the computation of functions of private data belonging to multiple

users. As an example, consider the network of Netflix users. The

private data are the individual users’ movie ratings and the global

function is the average movie ratings across all users. The challenge

in such applications is to perform the computation accurately while

preserving the privacy of the users’ data. A vast amount of literature

on this topic investigates strategies that can be adopted by the users

and/or the service provider (also called server) to enhance the privacy

of the users’ data. Most of the known non-cryptographic solutions

to this problem can be viewed as belonging to one of the following

two extreme regimes.

The first regime (Regime I) is when every user trusts only her-

self, not the server nor other users, and she is responsible for protect-

ing her own privacy. In other words, the “circle of trust” of a user

comprises only herself. She can protect her privacy by, for example,

adding some random noise to her private information before sending

it to the server. Clearly the addition of noise leads to a reduction

in the accuracy of the computed global function, which is known as

the privacy-accuracy tradeoff (also referred to as the privacy-utility

tradeoff). In the second regime (Regime II), every user trusts her-

self and the server but not any of the other users. In other words,

the circle of trust of a user comprises herself and the server. In this

regime, each user is willing to send her exact private information to

the server, and expects the server to protect the privacy of their data.

Both these regimes have some inherent drawbacks. In Regime

I, typically the accuracy of the computation has to be compromised
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significantly in order to obtain sufficient privacy. In Regime II, the

users need to trust the server completely. If, for instance, the server

discloses the users’ information to a third-party, then their privacy

may be compromised even if the released data were anonymized [1].

In this context we propose an alternative to privacy enhance-

ment methods proposed for these two regimes. In practice, a user

often has trusted “friends” with whom she is willing to share her

private information and whom she trusts to perform computations

accurately and protect the privacy of her information. We consider

such a regime in which the circle of trust of a user consists of herself

and her friends, but not the server. This regime is hence a middle

ground between the two extreme regimes I and II. The trust rela-

tionships between users are represented in the form of connections

in a social network. The key idea that we introduce in this paper

is that the knowledge of the social network can be intelligently ex-

ploited to design function-computation schemes that perform better

in terms of privacy-accuracy tradeoff, when compared to Regime I.

We first partition the users into circles of trust based on the underly-

ing social network. The users within each circle perform local com-

putations and the results of these computations are then transmitted

to the server in a privacy-preserving manner, where the final global

function is computed. As the individual user’s data is hidden within

the local computations, this approach yields an additional layer of

protection compared to schemes in Regime I.

The existing literature on privacy-preserving function computa-

tion can be divided into two broad categories. One category is per-

turbation methods, where users’ data are perturbed to protect their

privacy [2], for example by addition of random noise [3, 4]. For this

category of methods, the circle of trust of a user comprises only her-

self if she applies the perturbation technique herself, and herself and

the server if she trusts the server to perform the perturbation tech-

nique. Another category is cryptographic methods, where users’

data are encrypted to ensure their privacy [5–10]. Some of these

techniques belong to the class of Secure Multiparty Computation

(SMC) protocols, where users can compute functions of their private

data in a distributed way such that every user learns only the value of

the output function and nothing more about other users’ private data.

In this case, the circle of trust of each user consists of only herself.

These methods usually need extensive computational power [11].

In this paper we use differential privacy (DP) for quantifying a

user’s privacy with respect to the server and other entities outside of

her circle of trust. Differential privacy is a well accepted notion of

privacy for database privacy [12]. It models users’ data as determin-

istic, and gives a strong guarantee that the perturbation of a single

user’s data will not significantly affect the output of the computation.

Differential privacy quantifies a worst-case guarantee with respect to

an adversary who may have access to auxiliary information about the

users’ data. In this work, we develop a perturbation-based function-

computation scheme in which all users are guaranteed the same level
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of differential privacy with respect to the server. We use the mean-

squared-error (MSE) in estimating the global function of interest as

the accuracy measure. We compare the performance of our scheme

with those under Regime I that do not exploit inter-user trust, and

show that our scheme performs better in terms of privacy-accuracy

tradeoff. Other privacy measures used in the literature include confi-

dence intervals [3], mutual information [13,14], priori and posteriori

knowledge [15, 16], game theory [17], and cryptographic notions of

confidentiality [18, 19]. For a more comprehensive review on the

literature we refer the reader to the surveys of [20, 21].

The rest of the paper is organized as follows. We introduce the

problem and motivate the proposed approach in Sec. 2. We compute

the privacy-accuracy tradeoff of our scheme in Sec. 3. We describe

our star cover algorithm in Sec. 4. In Sec. 5 we discuss experimental

evaluation of our method and conclude in Sec. 6.

2. PROBLEM DESCRIPTION

2.1. Model

We model the friendship (trust) relationships among all the users in

a social network by a “friendship” graph G = (V, E), which we

assume is a simple undirected connected graph with vertex set V ,

consisting of N ≥ 3 nodes v1, v2, . . . , vN representing the users

and edge set E. An example is the graph shown in Figure 1(a). An

edge eij ∈ E exists if and only if users vi and vj are friends, indi-

cating that they trust each other and are willing to receive and per-

form computations on information from each other (i.e., we assume

a one-hop trust model). We use the terms node and user interchange-

ably. Every user vi has some private information denoted by Xi that

takes values in some bounded interval S ⊂ ℜ whose length is de-

noted by |S|, where ℜ is the set of real numbers. We assume Xi’s

are deterministic. The objective is to compute some global function

f(X1, X2, . . . , XN ) of the private information of all users. We as-

sume that function f belongs to the class of divisible functions [22],

i.e., it admits a decomposition of the form

f(X1, X2, . . . , XN ) = g (h1(Z1), h2(Z2), . . . , hM (ZM )) (1)

for all partitions {Zj}1≤j≤M
of the set of variables {Xi}1≤i≤N

.

Examples of functions that have this property include sum, product,

arithmetic mean, histogram, minimum and maximum functions. In

this paper, we restrict our privacy analysis to the sum function

f(X1, X2 . . . , XN ) =

N
X

i=1

Xi = Xsum (2)

for real-valued inputs, which is the function of interest in applica-

tions like census surveys and recommendation systems, with the

understanding that the results presented here can be generalized to

other divisible functions and other ranges of data values.

2.2. Proposed Approach

In our approach the server uses its knowledge of the topology of G
to partition users into clusters. Since users are willing to share in-

formation only with immediate neighbors under the one-hop trust

model, each cluster must have one user who is a neighbor of every

user in the cluster. Equivalently, each cluster must be a star sub-

graph of G. A star is a tree with maximum diameter 2 [23]. Given

a friendship graph G, we first identify a spanning star forest of the

graph G, i.e., a spanning subgraph of G whose connected compo-

nents are stars. We denote these stars by S1, S2, . . . , Sr , where r

v1
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v7
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Fig. 1. (a) An example of a friendship graph G with 7 nodes. (b)

A spanning star forest of G in (a). Square shaped nodes and thick

edges represent centers and edges of the stars. Each star represents

a circle of trust (enclosed by a gray area in the figure). Each star

center collects the information from neighboring nodes in the star

and sends the sum of the collected information to the server.

is the number of connected components in the spanning subgraph.

We call C = {S1, S2, . . . , Sr} a star cover of graph G. Note that

the stars cover the nodes of the graph, but not necessarily the edges.

In general star covers are not unique. The exact criterion and algo-

rithm we use for choosing the appropriate star cover are described

in Sec. 4. We denote by cj the center node of star Sj , and by kj

the number of vertices in Sj . The center nodes c1, c2, . . . , cr , also

called star centers, form a dominating set for G, i.e., every vertex in

G is at most one hop away from one of the star centers [23]. We

use s(i) to denote the index of the star to which user i is assigned.

Figure 1(b) shows an example star cover C = {S1, S2} of the graph

in Figure 1(a) with r = 2 stars. Star S1 consists of k1 = 3 nodes

v5, v6, v7, where v5 is the center node (c1 = v5), and star S2 con-

sists of k2 = 4 nodes v1, v2, v3, v4, where v3 is the center node

(c2 = v3).

By partitioning the graph into disjoint star-shaped clusters we

effectively partition users into disjoint circles of trust where all users

in each circle (i.e., star) trusts the user represented by the star center.

In our scheme, the center node cj of each star Sj collects the private

information of all the nodes, computes the sum

Zj =
X

vi∈Sj

Xi

of the collected information and sends a perturbed version ( eZj ) of

it to the server. The server computes sums up the local values it

receives from the star centers to obtain

bXsum =

r
X

j=1

eZj ,

which is an unbiased estimate for Xsum in Eq. (2) when the added

perturbations are zero-mean. In our approach, we assume that the

server knows the friendship graph topology and that it is the entity

responsible for performing the star cover.

3. PRIVACY-ACCURACY TRADEOFF

In this section we quantify the privacy guarantee and accuracy ob-

tained using our scheme, and compare them with schemes under

Regime I that do not exploit inter-user trust.

3.1. Differential Privacy (DP) Metric

We propose an algorithm for computing the sum of users’ data that

guarantees ǫ-differential privacy (ǫ-DP) to all the users with respect

to the server. Let X = [X1, X2, . . . , XN ] denote the vector of
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users’ private information. Denote by T (X) the set of all informa-

tion available at the server. Vector T (X) is essentially a vector of

size r that contains all the uploaded values by the star centers. Our

proposed algorithm is ǫ-DP (i.e., all users enjoy ǫ-DP) if

P [T (X) = t] ≤ exp(ǫ)× P

h

T (X
′

) = t

i

(3)

for all pairs X ,X
′

which differ in only one entry, and for all t ∈
ℜr , where by abuse of notation we use P [T (X) = t] to denote the

probability density function of T (X) computed at t [24].

Differential privacy guarantee enjoyed by a user gets stronger as

ǫ decreases to 0. Differential privacy quantifies a worst-case guar-

antee with respect to an adversary who may have access to auxiliary

information about the users’ data. In particular, even if all users out-

side the circle of trust of a user decide to collude and report their

data to an adversary, the user still has ǫ-DP. Therefore, our approach

is robust to malicious nodes outside a user’s circle of trust. Further-

more, DP is composable. That is, joint computation of functions

f1, f2, . . . , fq , each with ǫ1, ǫ2, . . . , ǫq-DP guarantee, respectively,

yields
`

Pq

l=1
ǫl

´

-DP guarantee [25].

A popular mechanism to guarantee differential privacy [12, 26]

in function computation is via the Laplacian mechanism. In this

approach, the value of the computation is perturbed using addi-

tive Laplacian noise. In order to guarantee ǫ-DP for computing

a real-valued function f via the Laplacian mechanism, the result

of the computation f(X) is perturbed by adding to it a noise

term that follows a Laplacian distribution with mean 0 and variance

2 (∆(f)/ǫ)2, where ∆(f) is the sensitivity of the function f defined

as

∆(f) = max
X ,X

′

˛

˛

˛

f(X)− f(X
′

)
˛

˛

˛

, (4)

where the maximum is taken over all pairs X ,X
′

which differ in

only one entry. The Laplacian mechanism is known to be optimal

for high privacy scenario (ǫ→ 0) [27]. For the purpose of analysis,

we restrict ourselves to the Laplacian mechanism.

3.2. Quantifying Accuracy

To guarantee ǫ-DP, each star center adopts a Laplacian mechanism

while reporting the value of the local computation to the server. In

the case of sum function, it is easy to see that it suffices that each

star center cj uploads

eZj = Zj + nj , (5)

to the server, where nj is zero-mean Laplacian noise with variance

σ2

n = 2|S|2/ǫ2.

At the server, an estimate bXsum of Xsum is computed by
bXsum =

Pr

j=1
eZj . There are r independent noise terms added to

Xsum, hence the MSE in estimating Xsum using bXsum, which is

defined as our accuracy measure, is

MSE( bXsum) = 2r|S|2/ǫ2. (6)

Note that a small MSE indicates that Xsum can be accurately es-

timated, i.e., high accuracy. It is immediately seen that if users de-

mand more privacy (smaller ǫ), the accuracy in computing Xsum de-

grades, which indicates the privacy-accuracy tradeoff of our scheme.

In addition, for a fixed ǫ, the accuracy improves as r decreases. In

other words, a star cover with fewer star components, performs bet-

ter in the privacy-accuracy tradeoff compared to a star cover with

more star components.

For comparison, now consider a perturbation-based scheme un-

der Regime I that does not exploit inter-user trust. In such a scheme,

as every user takes care of her privacy, in order to guarantee ǫ-DP to

her data, she has to communicate Xi to the server in an ǫ-DP way.

The obtained accuracy is thus

MSE( bXsum) = 2N |S|2/ǫ2, (7)

which is a factor N/r worse than that obtained under our scheme.

The Relative Accuracy Gain (RAG) under the Laplacian mechanism

is thus

RAG =
N

r
. (8)

Our scheme thus performs better in the privacy-accuracy tradeoff

compared to the perturbation-based scheme in Regime I that does

not exploit inter-user trust.

3.3. Extensions of the Method

Our approach can be easily adapted for other divisible functions sat-

isfying (1). For example, in the case of the maximum (resp., mini-

mum) function, each star center uploads to the server the maximum

(resp., minimum) of the data within the star in an ǫ-DP way. Sup-

pose that in Eq. (1) M = r and {Zj}1≤j≤r
represents the partition

induced by the star cover, then the amount of noise added by the star

center node cj to the uploaded data in Eq. (5) is determined from

the sensitivity of hj . Furthermore, if one or more such functions

are computed, we can quantify the privacy guarantee of our scheme

from the composability property of DP.

The privacy guarantee of our scheme can be enhanced when

combined with other privacy-preserving mechanisms. For instance,

privacy of the proposed scheme with respect to the server can be

boosted by using an SMC protocol [20, 21] for the communication

between the star centers and the server. In addition, an extra layer of

protection with respect to other users in the cluster can be added if

the users in each star adopt an SMC scheme when reporting the data

to their star-center.

4. STAR COVERING ALGORITHM

For a general graph G, the problem of finding a star cover as dis-

cussed in Sec. 2.2 does not admit a unique solution. A natural choice

for the star cover is one that minimizes the number of star compo-

nents r. The following proposition is immediate from Sec. 3.

Proposition 1. Consider a star cover C∗ that has the minimum num-

ber of star components r among all the possible star covers for a

given graph G. Equivalently, C∗ is a star cover whose centers form

a minimum dominating set (MDS) for G. Then, the MSE in estimat-

ing the sum of users’ private information is minimized (maximum

accuracy) where ǫ-DP is guaranteed to all the users. �

An MDS of a graph is a dominating set with the minimum

number of vertices. Although finding an MDS for a graph is NP-

complete, it can be approximated. In our experiments, we use the

greedy approximation algorithm [28] initialized with a warm start

obtained from the solution to a linear program (LP) approxima-

tion [29] of the MDS problem. The solution to the LP provides

also a lower-bound on the MDS size. Note that C∗ in Proposition 1

may not be unique. Thus even if we identify an approximate MDS

for the friendship graph, we still have the task of assigning all the

users in the network to the star centers in order to have a complete

description of the star cover. We assign the remaining nodes such
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that the workload of the star centers is balanced. The computation

and communication load for each star center node is proportional to

the number of users in its star (the star size). Thus the maximum

workload among all users can be minimized by choosing the assign-

ment that minimizes the maximum size of all stars, which is called

the rooted minmax star cover problem

Our overall algorithm for finding a star cover is as follows. In

the first stage, we find a set of r star centers (also referred to as star

roots) that approximate an MDS. In the second stage, we run our

rooted minmax star cover algorithm described in Algorithm 1. In

the algorithm, ∆max denotes the maximum degree of the roots in G,

and GB denotes the bipartite graph consisting of the set of r roots,

the set of N−r remaining nodes and the edges between the two sets.

For integer-valued vector REP = [REP(1), REP(2), . . . , REP(r)],
we use GREP

B to denote the bipartite graph obtained from GB by

replicating every root i together with all its incident edges REP(i)
times. Our rooted minmax star cover algorithm is based on replicat-

ing the star centers in GREP

B and performing a maximum cardinality

matching; user i is assigned to star center cj iff node i is matched

to one of the replicates of root cj . The algorithm keeps decreasing

the number of root replicates in a greedy manner such that the max-

imum number of times a star center is replicated is minimized. The

algorithm terminates as soon as a replicated root is not matched to

any user. We have the following theorem. We do not include a proof

due to space constraints.

Theorem 1. Given r star centers (roots) such that the minimum

degree of ri’s is at least 2, the minmax star cover algorithm in Al-

gorithm 1 outputs a star cover with the given roots such that the size

k
∗

of the largest star is minimized. �

REP(s)← ∆max for s = 1, 2, . . . , r;

for k∗ = ∆max to 1 do

while ∃ci s.t. REP(i) > k∗ do

REP(i)← REP(i)− 1;

M ← A maximum matching on GREP

B ;

if |M | < N − r then

REP(i)← REP(i) + 1;

k
∗
← k∗ + 1;

M ← A maximum matching on GREP

B ;

foreach matched user in M do
Assign user to star with center cj if she is

matched to a replicate of cj ;

end

Exit the algorithm;

end

end

end

Algorithm 1: Our proposed rooted minmax star cover algorithm.

In the next section we apply the proposed star covering algo-

rithm on friendship graphs obtained from real datasets.

5. EXPERIMENTS AND DISCUSSION

We apply our star covering scheme on two datasets. Dataset A is a

collection of several users’ ego networks, i.e., the nodes in the graph

are a few randomly chosen users and their friends, collected from

Google+ [30]. Dataset B consisting of friendship relationships of

Pokec, a popular social network [31]. For each dataset, we built

G Graph Statistics k
∗

RAG

N δavr C r

A 95897 30.4 0.40 153 3278 626.7

B 1198274 13.9 0.11 209360 223 5.72

Table 1. Statistics of the friendship graphs obtained from the

datasets; resulting minmax workload k
∗
; and the Relative Accuracy

Gain (RAG) (refer to Eq. (8)) of our scheme relative to perturbation-

based schemes under Regime I that do not exploit inter-user trust.

graph G by drawing an edge between any pair of users who are

friends with each other (bidirectional friendships) and discarding

all isolated nodes. We then found an approximate MDS (AMDS)

for each graph and ran our rooted minmax star cover algorithm. In

Table 1 we present statistics of the above graphs including number

of nodes N , average degree δavr and average clustering coefficient

C [32], the AMDS size r, and the minmax workload k
∗
. The ob-

tained AMDS sizes are within 0.7% of the LP lower-bound. As the

graph for dataset A is a collection of a few users’ ego networks,

the graph is inherently well connected. Thus, the graph has a small

MDS.

When all users are guaranteed ǫ-DP, the Relative Accuracy

Gain (RAG) (refer to Eq. (8)) in estimating Xsum compared to

perturbation-based schemes under Regime I is 626.7 and 5.72 for

datasets A and B, respectively. Hence, our proposed scheme per-

forms much better, especially for dataset A, compared to perturbation-

based schemes under Regime I that do not exploit inter-user trust.

The benefits of our scheme are enjoyed especially when the size r of

the AMDS is small compared to the total number of users N . This

happens for example when the graph is well-connected such as that

for dataset A.

6. CONCLUSION AND FUTURE WORK

We studied the problem of privacy-preserving computation of func-

tions of data belonging to users in a social network under the as-

sumption that users are willing to trust their friends with their data.

Our approach is based on partitioning the friendship graph into dis-

joint circles of trust, and performing local computations within each

circle. In a setting where all users are guaranteed ǫ-differential pri-

vacy, the distortion added to the computed global function under our

scheme is much lower compared to that under a scheme that does

not exploit inter-user trust. In addition, our algorithm for partition-

ing the friendship graph ensures that the workload on star centers

are balanced. From the experimental evaluation of our algorithms on

real social networks, we observed that the algorithm provides good

privacy-accuracy tradeoff when the graph is well-connected. As we

discussed it is also possible to extend our scheme to more general

functions. We are currently exploring applications of this scheme in

social computing applications like crowd-sourcing and participatory

sensing.
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