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ABSTRACT

In this paper, we propose a novel method to search for precise
locations of paired note onset and offset in a singing voice
signal. In comparison with the existing onset detection algo-
rithms, our approach differs in two key respects. First, we
employ Correntropy, a generalized correlation function in-
spired from Reyni’s entropy, as a detection function to cap-
ture the instantaneous flux while preserving insensitiveness
to outliers. Next, a novel peak picking algorithm is specially
designed for this detection function. By calculating the fit-
ness of a pre-defined inverse hyperbolic kernel to a detection
function, it is possible to find an onset and its corresponding
offset simultaneously. Experimental results show that the pro-
posed method achieves performance significantly better than
or comparable to other state-of-the-art techniques for onset
detection in singing voice.

Index Terms— onset detection, offset detection, singing
voice, entropy, pairwise peak picking

1. INTRODUCTION

Onset detection is a problem of finding the precise location
of discrete musical events, and thus is an important pre-
processing step in many music applications, including pitch
estimation, beat tracking, and automatic music transcription,
to name a few. In music signal processing, note onset de-
tection still remains a challenging problem, particularly for
singing voice, because of several reasons such as a large vari-
ance in articulation, singer-dependent timbral characteristics,
and slowly-varying onset envelopes. The report from Music
Information Retrieval Evaluation eXchange 2012 (MIREX
2012) for solo singing voice reflects these difficulties, where
the best-performing algorithm yields the F-measure of merely
55.9% [12]. It is noteworthy that singing class gives much
lower F-measure value than other classes like polyphonic
pitched, solo brass, and wind instruments classes.
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Fig. 1. Overview of the system

Numerous methods have been proposed so far to solve the
onset detection problem [1]. Majority of existing methods are
generalized by the two-stage procedures: detection function
and peak picking [1–8]. Generating detection function refers
to transforming audio signals into feature vectors more rele-
vant to indicating onsets. Due to the fact that singing voice
contains many soft onsets [1], a recent study focuses on find-
ing the harmonic regularity instead of using the conventional,
energy-based techniques [4]. If a properly designed detec-
tion function is provided, onset candidates will give a rise to
certain local peaks. The peak-picking procedure then finds
precise onset locations from the detection function.

This paper explores a new detection function and a peak-
picking method for onset/offset detection in singing voice.
The use of correntropy for detection function brings us two
major advantages: first, it provides a compact front-end like
a conventional correlation function; second, the property of
correntropy preserves robustness to outliers – such as noise
or subdominant changes in frequency, amplitude or phase –
by projecting an input signal into a high dimensional Repro-
ducing Kernel Hilbert Space (RKHS).

Figure 1 illustrates an overview of the proposed system.
We describe a novel detection function based on correntropy
in Section 2. An ad-hoc kernel optimizer continuously up-
dates a localized parameter required for correntropy estima-
tion. The detection function yields a regular shape with dis-
tinct local peaks, or (−)/(+) peaks, which correspond to on-
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Fig. 2. Singing voice example. From top to bottom:
(a),(b) and (c) are input signal, Wt(τ) and detection function
∆W (t), respectively. Red dashed-lines are onset positions
that correspond to (-) peaks in (c). Black solid-lines are (+)
peaks near the offset.

set/offset, respectively. This regular shape motivates us to
design a pairwise peak-picking method in Section 3. The
experimental results are presented in Section 4, followed by
concluding remarks in Section 5. A relation to prior work is
addressed in Section 6.

2. DETECTION FUNCTION BASED ON
CORRENTROPY

Our detection function first passes the time-domain input sig-
nal sampled at 11,025 Hz into an auditory filterbank [18]. We
map center frequencies of 64-channel gammatone filterbank
according to the Equivalent Rectangular Bandwidth (ERB)
scale between 80 Hz and 4,000 Hz. Hereafter, xc(t) refers
to the amplitude of the filtered parallel output, where c and t
denote the channel and discrete time indices, respectively.

2.1. Correntropy-based Formulation

Correntropy function incorporates both distribution and tem-
poral structures of a time series in random processes [10].
There are various applications of correntropy to non-linear
and non-gaussian signal processing where correlation func-
tion is not sufficient. Let {xt : t ∈ T} be a random process
with T denoting an index set. Correntropy function V is de-
fined as

V (xt1 , xt2) = E[κ(xt1 , xt2 |σ)], (1)

where κσ(·) is a Parzen kernel and E is an expectation oper-
ator. V is advanced to measure the distance between the two
discrete vectors.

The properties reveal that correntropy has very similar
characteristics to a conventional correlation function. Liu et
al. showed that the sufficient condition to satisfy V (t, t−τ) =
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Fig. 3. Examples of Wt(τ) in Section 2.2: (a) σ = 0.017 pre-
serves good contrast between stationary and non-stationary
regions. (b) bad case using global optimum for 45 s. (c) im-
proved result with “loosely” localized σ. (d), (e) zoomed-in
parts from (b) and (c). We observe more contrast in (e).

V (τ) is that the input random process must be time shift-
invariant on the even moments. More specifically, this is
a stronger condition than a wide-sense stationarity involv-
ing only second-order moments. We estimate correntropy V
given t, c and lag τ by computing the sample mean of a size
N window as follows:

Vt,c(τ) =
1

N

N∑
n=1

Nσ(xc(t+ n), xc(t+ n+ τ)), (2)

where Nσ(p, q) = 1√
2πσ

exp{− (p−q)2
2σ2 }, and σ is a Gaussian

bandwidth parameter. In practice, both the window size N
and maximum τ are set to sampling rate/80, when the lowest
band-limit is 80 Hz. Then the correntropy coefficient for each
channel is “pooled” into a non-negative summary matrix W
as follows [9]:

Wt(τ) =
∑
c

Vt,c(τ). (3)

The detection function ∆W (t) is then calculated by the rec-
tified difference with a hop-size h as follows:

∆W (t) =
∑
τ

Wt+h(τ)−
∑
τ

Wt(τ). (4)

A monophonic singing example in Figure 2 illustrates on-
set/offset regions and their relation to the detection function.
We estimate onset/offset locations by finding the first time t at
which ∆W (t) < 0, and the first time after t where ∆W (t) >
0, respectively.

2.2. Ad hoc Kernel Optimization

A free parameter σ in Equation (2) acts as a sensitivity con-
troller for detection function: the larger σ becomes, the faster
the higher-order moments decay. To keep both nonlinearity
and discrimination ability, one way to select the optimal σ is
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Fig. 4. Illustration of peak-picking algorithm. (a) Pre-defined kernel matrix Λ. (b) Cross section of Λ with ω. In (c), start search
at t = 0. Calculate fitness by stretching Λ. In (d), onset is found at maximum fitness location. In (e), start search from previous
onset location using −Λ. In (f), corresponding offset is found similarly as in (d). We repeat (c) to (f) until the end.

given by Silverman’s Rule of Thumb [16]. Assuming that κ is
a Gaussian kernel, the optimal σ can be simplified to

σ = b · ψ̂N−1/5, (5)

where b, ψ̂ and N denote the constant scale factor, sample
standard deviation, and the number of samples, respectively.

The sensitivity of the detection function can be observed
from the contrast in colors inWt(τ). Figure 3(a) is a good ex-
ample where the boundaries would yield a relevant detection
function using the global optimum σ. However, Figure 3(b)
reveals that the global optimum parameter doest not always
guarantee good contrast on the entire song. On the other hand,
a strongly localized parameter would not guarantee temporal
contrast. In this situation, a “loosely” localized optimal pa-
rameter is required for robust detection of real-world singing
onsets. Figure 3(c) displaysWt(τ) with improved contrast by
an ad-hoc optimizer. It updates σ with an interval h. In prac-
tice, we achieve good performances by computing the optimal
σ using Equation (5) with an observation window size of 7 s
and h = 5 ms. This improves the precision by over 10% in
comparison with a global optimization method.

3. PAIRWISE SIMULTANEOUS PEAK PICKING

A pairwise peak-picking approach is motivated by the regu-
lar shape of the detection function observed in Figure 2(c): a
basic idea is to capture a pair of falling and rising peaks by
calculating a fitness to a pre-defined kernel. Figure 4 illus-
trates this concept.

We first generate a set of pre-defined inverse hyperbolic
kernels, whose shape is similar to expansion or shrinkage of
detection function. This kernel Λ is defined as

Λ(z) =
z

1 + α− |z|
, (6)

such that −1 + 10−5 ≤ z ≤ 1 − 10−5, where α is a sharp-
ness factor. The range of z is set to avoid division by 0, and
α ≈ 0.15 is empirically found. Given an observation window
length ω and sample index i = {1, 2, ..., ω}, we chop z into
ω samples by a linear scale. In our default settings, ωmin is

set to 4 samples (=20 ms) and ωmax is set to 500 samples or
larger (≥ 2.5 s) for 5 ms-correntropy hopsize h. Hence, any
event less than 20 ms will be ignored. Figure 4(a) displays
the generated kernel matrix for a set of observation length ω.

To find a pair of offet/onset, we calculate the fitness be-
tween the detection function and the pre-defined kernel as we
expand the kernel size. The fitness is calculated by

Fit(Λ′ω,W
′
ω) = (Λ′ω −W ′ω)2 · ω−k, (7)

where Λ′ω is the pre-defined kernel sampled at ω, and W ′ω is
the ω-long rectangular windowed detection function. k is a
weighting factor for close peaks and we set k = 1. For refer-
ence, Equation (7) is derived from lack-of-fit sum of squares
which has been widely used in classical F-test statistics [17].
To find a pair of onset/offset, we start from the last onset po-
sition and perform the same calculation but use −Λ.

The above procedures are summarized in Algorithm 1.
This pairwise approach makes sense in monophonic sources:
if an onset is found, then its corresponding offset must exist
before the next onset.

4. EXPERIMENT

4.1. Dataset

The dataset is obtained from the authors of referenced pa-
per [4]. It allows us to directly compare the performance of
proposed algorithm to theirs. The total length of audio clips
is about 13 minutes, which is much longer than singing data
included in the MIREX audio onset detection task [11]. The
dataset consists of 13 male and 2 female singers’ recordings
of popular songs. Onset labels are cross-validated by three
persons who have professional careers in music. In total, the
dataset contains 1,567 onsets with annotations. Audio files
are produced in mono with the sampling rate of 44,100 Hz.

4.2. Results and Discussion

We followed the evaluation procedure for onset detection de-
scribed in MIREX [11]. The tolerance value is set to +/−
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Input :
ω = window size, Λ = inverse hyperbolic kernel.
W = detection function.
Output:
?, ◦ are onset and offset marking on time index, t.
while t→ T do

%find onset, ?
for t′ : (t+ ωmin)→ (t+ ωmax) do

F (t′) = Fit(Λ′,W ′)
end
? = t+ arg maxt′ (F (t′))
t = ?
% find offset, ◦
for t′ : (t+ ωmin)→ (t+ ωmax) do

F (t′) = Fit(−Λ′,W ′)
end
◦ = t+ arg maxt′ (F (t′))
t = ◦

end

Algorithm 1: Pseudo code for pairwise peak picking de-
scribed in Section 3.

Class # of Onset Precision Recall F-measure

male 1,533 80.9 80.1 80.3
female 34 93.8 88.4 91.4

Total 1,567 81.1 80.2 80.6

Table 1. Performance of the proposed algorithm

50 ms, which allows us to consider any detected onset within
this range from the ground-truth onset as a true positive. If
not, then it is counted as a false negative. A false positive is
defined as any detected onset outside all the tolerance range.

The overall results are summarized in Table 1. Using the
same dataset, we compared the performance of the proposed
algorithm with others, including a recent algorithm proposed
by Heo et al. [4] as well as more conventional ones [14, 1, 3,
13]. It can be seen from Figure 5 that the proposed algorithm
achieves the results significantly better than all the other algo-
rithms in all metrics. Although not directly comparable, it is
also remarkable that the performance is over 30% higher than
the best-performing algorithm for singing voice class from
MIREX 2012 [12].

The proposed algorithm is able to detect offsets as well.
However, we could not find any reliable dataset with offset
annotations. Here we briefly report an extra-experiment re-
sult. An extra annotation for offsets was prepared for each
one minute-long excerpt of the previous singing dataset, and
for another clarinet dataset. The tolerance value for onset was
set to 50 ms, as with the main experiment. On the other hand,
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Fig. 5. Comparison of performance with existing onset de-
tection algorithms. From left to right, the proposed and other
algorithms [4, 14, 1, 3, 13].

offset tolerance was set more generously to 100 ms. In prac-
tice, human cannot find such precise defusing locations by
ears. The result was F = 83.5% for singing onset and 95.0%
for clarinet onset. For offset, we obtained F = 67.5% and
F = 95.0%, respectively.

5. CONCLUSION

We proposed a pairwise approach to onset/offset detection for
singing voice recordings. The proposed method differs from
previous approaches in two main aspects. First, we employed
higher-order statistics to capture onset/offset events in a time-
domain signal. We also demonstrated that a compact adap-
tive kernel method improved the results. Secondly, a new
peak picking algorithm was derived for this detection func-
tion. By searching a precise location where the fitness be-
tween a pre-defined kernel and the detection function is max-
imized, a set of onset and its corresponding offset was simul-
taneously found. We evaluated the proposed method with a
recognized dataset. The average F-measure for onset detec-
tion by the proposed algorithm was 80.6%, which is highest
among all methods in comparison.

6. RELATION TO PRIOR WORK

So far, a solid idea in this paper was that the higher-order
statistics using correntropy [10] would provide more robust-
ness to general onset detection problem. A previous appli-
cation to monophonic pitch detection exists [9]. The use of
Rule of Thumb for kernel parameter optimization was recom-
mended in Liu [10]. We extended these concepts to a novel
feature representation for a detection function.

For peak picking, adaptive threshold method has been
widely used [1]. Others have formulated such decision mak-
ing into a machine learning problems [5–7]. The proposed
method is novel in that it jointly estimates onset/offset, and it
can be generalized as dynamic programming.

632



7. REFERENCES

[1] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury,
M. Davies and M.B. Sandler: “A tutorial on onset
detection in music signals,” IEEE Transactions on
Speech and Audio Processing, 13(5), pp. 1035–
1047, 2005.

[2] S. Dixon: “Onset detection revisited,” In Proc. of
DAFx, Montreal, Canada, pp. 133–137, 2006.

[3] C. Duxbury, M. Sandler, and M. Davies: “A hy-
brid approach to musical note onset detection”, In
Proc. of DAFx, Hamburg, Germany, pp. 33–38,
2002.

[4] H. Heo, D. Sung and K. Lee: “Note Onset De-
tection based on Harmonic Cepstrum Regularity”,
IEEE Int. Conf. on Multimedia and Expo, San
Jose, USA, pp. 1–6, 2013.

[5] C. C. Toh, B. Zhang, and Y. Wang: “Multiple-
feature fusion based onset detection for solo
singing voice,” In Proc. of Int. Society for Music
Information Retrieval, 2009.
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