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ABSTRACT

This paper exploits the connection between minimum-distortion per-
fect counterforensics and maximum-rate perfect steganography in
order to provide the optimum solution to the first of these prob-
lems, in the case in which the forensic detector solely uses first-
order statistics. The solution relies on Slepian’s variant I permutation
codes, which had previously been shown to implement maximum-
rate perfect steganography when the host is memoryless (equiva-
lently, when the steganographic detector only uses first-order statis-
tics). Additionally, we demonstrate a blind counterforensic strategy
made possible by permutation decoding, which may also find appli-
cation in image processing.

Index Terms— Counterforensics, steganography, permutation
coding, histogram-based forensics, histogram specification

1. INTRODUCTION

The field of counterforensics deals with techniques aimed at mis-
leading digital forensic detection tests, whose goal is determining the
authenticity of digital assets. Many algorithms have been proposed
after the counterforensics concept was first formulated by Kirchner
and Böhme [1]. The reader can find a good survey of relevant coun-
terforensic algorithms for image forensics in [2]. However existing
counterforensic methods have generally been of a heuristic nature,
and thus neither blind (that is, they tend to be targeted to particular
forensic detectors) nor minimum-distortion perfect (that is, they do
not produce a forged signal which both evades detection and is as
similar as possible to a target forgery). The exception are two algo-
rithms recently put forward for the case in which the forensic detec-
tor only relies on first-order statistics: 1) Barni et al. [3] have given a
blind counterforensic algorithm, which although not undetectable it
conforms to a target fidelity constraint; and 2) Comesaña and Pérez-
González [4] have essentially solved the problem of undetectable
counterforensics with maximum fidelity, assuming full knowledge
of the forensic detector (nonblind counterforensics).

In spite of these important advances, we firmly believe that the
counterforensics problem warrants further examination. This is so
even in the case of universal first-order detection (i.e. histogram-
based), which is largely solved and on which we will focus here.
A powerful reason for reexamining the problem is the observation
by Böhme and Kirchner that counterforensics has strong links with
data hiding (steganography and watermarking), and thus should not
be studied in isolation but in connection with this field [2]. This is
the main motivation behind this paper, in which we will follow a very
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specific link: the one between minimum-distortion perfect counter-
forensics and maximum-rate perfect steganography. We have cho-
sen this nomenclature in order to unambiguously emphasise the par-
allels between the two settings. For the avoidance of doubt, by a
minimum-distortion perfect counterforensic method we mean an al-
gorithm that modifies a forgery in such a way that the modified sig-
nal is as close as possible to the forgery according to some distance,
while simultaneously being accepted as legitimate by a forensic in-
vestigator performing optimum detection. On the other hand, by
a maximum-rate perfect steganographic method we mean an algo-
rithm that modifies a host to embed information with maximum em-
bedding rate, and such that the modified signal is accepted as not
suspicious by a warden performing optimum detection.

Both problems feature an agent (a forger and a steganographer,
respectively) who modifies a signal with a view to avoiding detection
of this modification by a second agent (a forensic investigator and a
warden, respectively). The key link between perfect counterforen-
sics and perfect steganography is that the modified signal is drawn in
both cases from a formally identical pool: the set of all signals with
a statistical structure such that the detector will not declare them ille-
gitimate (counterforensics) or suspicious (steganography). The main
difference lies in what the forger and the steganographer actually do
with this set of perfect signals. The forger wishes to find a signal
in the set which lies as close as possible to his forgery (minimum-
distortion counterforensics); importantly, he needs to consider the
whole ensemble of signals in order to always find an optimum one.
Instead, the steganographer wishes to attach unique labels to all sig-
nals in the set, thus maximising the number of messages that can be
conveyed (maximum-rate steganography), and also must be able to
produce a signal in the set given its label, and vice versa1.

In a recent paper [5] we showed that Slepian’s variant I permu-
tation codes [6] implement maximum-rate perfect steganography if
the steganographic detector only examines first-order statistics (or if
the host is memoryless). In the light of the discussion above, it fol-
lows that Slepian’s variant I permutation codes must also be central
to implementing minimum-distortion perfect counterforensics when
the forensic detector only examines first-order statistics. In this pa-
per we will describe, analyse and test this use of permutation coding.

Notation. Boldface lowercase Roman letters are column vec-
tors. The special symbol 1 is an all-ones vector. Capital Greek let-
ters denote matrices; the entry at row i and column j of matrix Π is
(Π)i,j . (·)t denotes a vector or matrix transpose. The 2-norm of a
vector u is ‖u‖ =

√
utu. Calligraphic letters are sets. The indi-

cator function is defined as 1{A} = 1 if event A is true, and zero
otherwise. Random variables are represented by capital letters.

A signal is denoted by a vector x = [x1, x2, . . . , xn]t ∈

1A distortion constraint must also be imposed if not all signals in the set
are semantically equivalent to the host, but this does not alter our discussion.
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Vn where V = {v1, v2, . . . , vq} ⊂ Z. We assume that v =
[v1, v2, . . . , vq]

t gives the elements of V in increasing order, that
is, v1 < v2 < · · · < vq . The histogram of x is a vector h(x) =
[h1(x), h2(x), . . . , hq(x)]t such that hk(x) =

∑n
i=1 1{vk=xi} ≥

0, and then 1th(x) = n. Let Sn be the symmetric group on
{1, 2, . . . , n}, which contains all permutations of the integers be-
tween 1 and n. We denote a permutation σ ∈ Sn by means of
a vector σ = [σ1, σ2, . . . , σn]t where σi ∈ {1, 2, . . . , n} and
σi 6= σj for all i 6= j. This vector can be used in turn to define a
permutation matrix Πσ with entries (Πσ)i,j = 1{σi=j}. Whenever
we just write Π (without a σ subindex) we refer to a generic n × n
permutation matrix. The rearrangement of x using σ is the vector
y = Πσ x, for which yi = xσi for i = 1, 2, . . . , n. We will follow
the convention that a rearrangement of x is a unique ordering of its
elements —in general, different permutations can lead to the same
rearrangement of a vector. A special case is the rearrangement of x
in nondecreasing order, which we denote by −→x .

2. MINIMUM-DISTORTION PERFECT
COUNTERFORENSICS

We assume a general post-processing counterforensic scheme [1].
The forger (attacker) post-processes a forgery, denoted by z ∈ Vn,
to obtain a post-processed forgery, denoted by y ∈ Vn. The forensic
detector is some function φ : Vn → {0, 1} such that φ(y) = 1
when y is classed as legitimate (authentic) and φ(y) = 0 when y
is classed as illegitimate (forged). We assume that the forger knows
that the forensic detector solely relies on the histogram of the signal
to be tested, but no further knowledge of the detector is assumed
in this section. The goal of the forger is to ensure that φ(y) = 1
while maximising the similarity between z and y according to some
measure. We call a decoy, denoted by x ∈ Vn, any legitimate signal
which the forger exploits to produce y. Apart from requiring that
φ(x) = 1, the only other strict condition that we are imposing on x
at this point is that its length be the same as that of z (that is, n). The
decoy choice will be discussed in Section 3, since it is not relevant
to draw the parallels mentioned in Section 1.

The central observation is the following one: any sequence y
with the same histogram as a given decoy x must be a rearrange-
ment of it, i.e., h(y) = h(x) iff y = Πx. Since the detector only
examines the histogram, then the forger knows that Πx will always
be declared to be legitimate by the detector, that is, if φ(x) = 1 then
φ(Πx) = 1. Thus, under the knowledge of the legitimacy of x, the
ensemble of signals among which the forger can choose a perfect
post-processed forgery is the same as the set of Slepian’s Variant I
permutation codewords with base codeword x [6]. If one replaces
“decoy” by “host” and “post-processed forgery” by “watermarked
signal”, the parallel with perfect steganography is evident (see [5]).

The fundamental difference with steganography is that in coun-
terforensics the forger wants to find a rearrangement y of x that is
as close as possible to z. If the function δ : Vn × Vn → R≥0 mea-
sures the distance between two signals, this entails finding a permu-
tation σ∗ that solves the following combinatorial optimisation:

σ∗ = arg min
σ∈Sn

δ(z,Πσx). (1)

Equivalently, the forger looks for a codeword which is as close as
possible to z in the codebook formed by all possible signals with
histogram h(x). This can also be seen as quantizing z using the
codebook of all rearrangements of x. Using (1), we may define the
quantization of z using that codebook as Qx(z) , Πσ∗x, and then
write y = Qx(z). This centroid is a minimum-distortion perfect

Qx(z)

post-processed forgery
y = Πσ∗x

forgery
z

decoy
x

Fig. 1. Minimum-distortion perfect counterforensics using permuta-
tion decoding

post-processed forgery given the decoy x. The setup just described,
formally identical to source coding using permutation codes [7], is
summarised in Figure 1.

In the remainder we will focus on the use of the Euclidean dis-
tance, δ(z,y) = ‖z− y‖. Minimising the Euclidean distance max-
imises the peak signal-to-noise ratio PSNR(z,y) = n2552/‖z −
y‖2 (when V = {0, 1, · · · , 255}). The Euclidean distance is also
convenient when the forensic test does not act upon y, but upon an
energy-preserving linear transformation of it, Υy (where Υ is an
orthogonal matrix): in this case ‖Υ(z− y)‖ = ‖z− y‖.

The solution to the problem of finding a rearrangement y
of x closest to z in the Euclidean distance sense was obtained
by Slepian in his original paper on permutation coding [6], moti-
vated by maximum-likelihood decoding under a Gaussian channel.
The solution is simple, perhaps surprisingly so when we consider
that there are

(
n

h(x)

)
= n!/(h1(x)! · · ·hq(x)!) rearrangements of x

—an amount that grows exponentially with n— and when we take
into account the fact that, in general, the centroids of a permuta-
tion quantizer are not regularly laid out—unlike, for instance, those
of lattice quantizers. We will give next a derivation of the solu-
tion more compact than the one given in [6]. First see that, since
‖z − Πx‖2 = ‖z‖2 + ‖x‖2 − 2 ztΠx because all rearrangements
of x have constant norm, then solving (1) is equivalent to maximis-
ing the bilinear form ztΠσx over σ ∈ Sn. We then invoke the
rearrangement inequality ztx ≤ −→z t−→x [8, chapter 10], which holds
for any two n-vectors z and x. This inequality also implies that

ztΠx ≤ −→z t−→x . (2)

One can now write −→z t−→x = ztΠt
σzΠσxx, where σz,σx ∈ Sn

are any two permutations that sort z and x, respectively, in nonde-
creasing order. Hence, identifying terms in (2), a permutation matrix
associated to σ∗ in (1) is Πσ∗ = Πt

σzΠσx . In practice one does not
need to manipulate two large matrices: an optimum post-processed
forgery y = Πσ∗x (not unique due to sorting ties) can be obtained
by replacing the hq(x) largest elements of z by vq , the next hq−1(x)
largest elements of z by vq−1, et cetera. The complexity of this oper-
ation is that of sorting two vectors, as evinced by (2), and the worst-
case complexity of the best sorting algorithms is only O(n logn).

Additionally, the minimum distortion ‖z − y‖ can be lower
bounded using the geometry of permutation coding (see [9, Sec-
tion II-C]). Since z cannot be closer to y than to the projections
of z on the permutation sphere ‖u‖ = ‖x‖, the covering sphere
‖u−x‖ = Rc (where x , (xt1/n)1 andR2

c , ‖x‖2−(xt1)2/n),
and the permutation plane 1tu = 1tx, then it follows that

‖z− y‖ ≥ max

{∣∣‖z− x‖ −Rc
∣∣, ∣∣‖z‖ − ‖x‖∣∣, ∣∣∣∣ 1t√n (z− x)

∣∣∣∣} .
This novel bound, although not always tight, may also find applica-
tion in the use of permutation codes as source codes [7].

Finally, see from inequality (2) that the minimum distortion ‖z−
y‖ must be the same whether we use x or Πx as a decoy: the his-
togram h(x) is all that matters in order to find an optimum y.
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3. DECOY CHOICE

Up to this point “minimum distortion” has referred to the optimum
distortion for a given decoy x. The remaining question is finding
a decoy that will globally minimise distortion over the space of all
legitimate signals, that is to say,

x∗ = arg min
x∈Vn
φ(x)=1

min
σ∈Sn

δ(z,Πσx).

The solution to this problem depends on the specific knowledge that
the forger has about the forensic detector. Two decoy choice scenar-
ios can be considered:

• Scenario 1: The forger does not know the forensic detector
(blind counterforensics). The solution put forward by Barni
et al. [3] for this scenario is to look in a database of legitimate
signals for a decoy x whose histogram is close to that of the
forgery z. If the database is large then it is likely that a good
match will be found. A procedure is given in [3] for obtain-
ing y from x and z, based on histogram and pixel remapping
techniques related to transportation theory [10]; this method
is able to enforce a target distortion, at the cost of an imperfect
post-processed forgery y. However it can always be replaced
by the method in Section 2 to get a minimum-distortion per-
fect post-processed forgery, which is normally very faithful
due the huge space of possibilities in the combinatorial op-
timisation. One issue with this approach occurs when the
forensic investigator has memory and sees t different signals
with the same histogram: as this is unlikely, he can suspect
that, at least, t − 1 of them are illegitimate. If the forger still
wishes to enforce a distortion ν smaller than the minimum
(and thus an imperfect post-processed forgery), he can do so
by choosing yν = z− ν(z− y)/‖z− y‖ instead of y.

• Scenario 2: The forger knows the forensic detector (nonblind
counterforensics). Comesaña and Pérez-González [4] have
shown that in this scenario it is possible to find an ideal de-
coy x∗ (y# in the notation of [4]) under mild assumptions
about the detection function2. More precisely, they show that
it is possible to find the histogram of an ideal decoy, which
is all that matters as discussed at the end of Section 2. From
the ideal decoy x∗, these authors find an optimum solution y
to minimum-distortion perfect counterforensics by relying
on transportation theory. It must be remarked that this opti-
mum is the same as the one derived in Section 2 by means of
permutation decoding (cf. [4, expression (6)] with the upper
bound in (2)).

3.1. Alternative decoy choice strategy for Scenario 1

Scenario 2 —which becomes plausible by invoking Kerckhoffs’
principle [4]— is clearly the most desirable one. However, in many
cases the forger can find himself in Scenario 1 and still mount a very
effective decoy choice strategy without recourse to any database
of legitimate signals. In effect, the forger always knows both the
legitimate original signal (which we denote by w) and the function
ϕ : Vn → Vn used to produce the forgery z from it, z = ϕ(w).
Therefore, he is aware of the type of artifacts that may appear in the
histogram of the forgery by comparing it against h(w). Most im-
portantly, as it will be seen in Section 4, he may also devise nearly

2In all likelihood, the same should be possible when the forger can only
access the forensic detector as a black-box oracle (see [11]).

ideal corrective measures to avoid them altogether. Some typi-
cal examples of this situation are forgeries produced by means of
γ-correction, histogram stretching or (double) JPEG compression.

This opens the door to an alternative decoy choice strategy for
Scenario 1, in which the forger fashions his own synthetic decoy
from scratch in two steps: 1) fabrication of an artifact-free syn-
thetic histogram h(x) for the post-processed forgery, based on the
knowledge of h(w) and ϕ; and 2) generation of a synthetic decoy x
with h(x) as its histogram. For the reasons discussed at the end of
Section 2, any signal whose histogram is h(x) will do as a synthetic
decoy, for instance

x , −→x = [v1, · · · , v1︸ ︷︷ ︸
h1(x)

, v2, · · · , v2︸ ︷︷ ︸
h2(x)

, · · · , vq, · · · , vq︸ ︷︷ ︸
hq(x)

]t (3)

Although step 1) above is not novel (see for instance the counter-
forensic procedure by Stamm et al. in [12]) observe that a minimum-
distortion post-processed forgery is only guaranteed through the use
of permutation decoding. Although a post-processed forgery ob-
tained from a synthetic histogram cannot be called “perfect”, since
the forger has no unequivocal guarantees about the legitimacy of the
synthetic decoy, we will see in Section 4 that the forger often stands a
good chance of producing a nearly ideal synthetic histogram, which,
coupled with permutation decoding, generally improves by a large
margin the fidelity results achievable in Scenario 1 when using a
database of legitimate signals to find a decoy. To conclude, observe
that the forger should not contemplate the use of w as a decoy, even
though he knows it is legitimate: if he would do so, y would typ-
ically turn out to be closer to w than to z, and then y, although
legitimate, could not be considered a proxy for the forgery anymore.

4. EMPIRICAL RESULTS

In this section we illustrate the approaches discussed in Sections 2
and 3.1 by means of a concrete practical case. We focus on forg-
eries of greyscale images whose samples are represented with 8 bits;
therefore q = 256 and v = [0, 1, 2, · · · , 255]t. We assume that
the forgery z is the γ-corrected version of the original w, that is,
zi = round (255 (wi/255)γ) for i = 1, 2, · · · , n. It is well known
that this operation introduces telltale traces in the histogram of z in
the form of peaks and troughs. These artifacts can be exploited by a
forensic detector, for instance through frequency analysis (see [13]).

We will address next the decoy choice approach outlined in Sec-
tion 3.1. In order to fabricate an artifact-free synthetic histogram,
the forger must examine the reason why artifacts appear in the first
place. In the case at hand, artifacts are clearly due to the applica-
tion of γ-correction to discrete intensity values, for which rounding
is required. If the intensity values were continuous there would be
no need for rounding, and then no artifacts would appear. There-
fore the artifact-free synthetic histogram must be obtained through
γ-correction of a continuous version of h(w).

In order to implement this strategy, the forger starts with the
probability mass function (pmf) p(w) = (1/n)h(w) with sup-
port v. Then he obtains a continuous counterpart of p(w) through
interpolation, which yields the probability density function (pdf)
fW (w). The application of γ-correction to the continuous ran-
dom variable W does not require rounding, and hence it is just
X = 255 (W/255)γ . The standard result for the transformation
of continuous distributions yields the pdf of the transformed vari-
able X , which is

fX(x) = fW

(
255

( x

255

) 1
γ

) ∣∣∣∣ 1γ ( x

255

) 1
γ
−1
∣∣∣∣ .
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Fig. 2. γ = 2, PSNR(z,y) = 53.4 dB (upper bound: 69.8 dB)
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Fig. 3. γ = 1/2, PSNR(z,y) = 52.1 dB (upper bound: 57.8 dB)

Next fX(x) is numerically integrated over x ∈ [vk−1/2, vk+1/2)
for k = 2, 3, · · · , q − 1, and over x ∈ (−∞, v1 + 1/2) and x ∈
[vq − 1/2,+∞), thus approximately obtaining the pmf p(x). The
artifact-free synthetic histogram is h(x) = round(np(x)). It is not
guaranteed that the elements of h(x) add up to n, because of the
final rounding and because of interpolation and numerical integra-
tion inaccuracies. If 1th(x) < n, a workaround is to increment by
one n − 1th(x) elements of h(x) chosen at random; otherwise we
should decrement by one 1th(x)−n nonzero elements. For large n,
this adjustment has negligible impact on the shape of the histogram.
The final step is the generation of the synthetic decoy x as in (3), and
of the post-processed forgery y = Qx(z) as discussed in Section 2.

The results of applying the procedure above to two γ-corrected
images are shown in Figures 2 and 3. Although it might appear from
a cursory visual inspection that h(y) does not faithfully follow the
shape of h(z), notice that the way in which h(y) is produced from
h(w) is nearly ideal with respect to γ-correction artifact removal.
In fact, the forger should refrain from attempting a better “visual fit”
by heuristically removing artifacts, such as, for instance, by smooth-
ing peaks through filtering and by patching troughs through inter-
polation, as this would inevitably lead to much lower PSNR values.
As discussed in Section 3.1, the forger cannot be completely certain
about the undetectability of the synthetic decoy. However, the fact
that the continuous approach is inherently free from γ-correction
artifacts, as shown in the figures, suggests that it would be hard
for a forensic detector to find evidence of γ-correction in the post-
processed forgeries. A rigorous test should be undertaken to prove
this, for example using the methods in [13]. Finally, a detector could
also try to look for nonlinear resampling in the histogram domain.

In any case, the procedure just given is, in and of itself, of inter-
est beyond counterforensics: it should also find application in image
processing, since it enables repeated γ-corrections without accumu-
lation of ill effects in the histogram. In fact one can see that permu-

tation decoding is closely connected with exact histogram specifica-
tion [14, 15]: it can be used as a procedure for finding the optimum
version (in the Euclidean distance sense) of any arbitrary image with,
exactly, some predefined target histogram.

5. CONCLUSIONS

We have given the solution to the problem of minimum-distortion
perfect counterforensics when the forger only knows that the foren-
sic detector uses first-order statistics and possesses a legitimate de-
coy. If the decoy can be optimally chosen, the solution found by
means of permutation decoding is the same as the one found by
Comesaña and Pérez-González [4] using transportation theory.

Nevertheless we must point out that the permutation coding view
of the problem is more unifying and insightful, since it highlights
the deeper theme of the connection between counterforensics and
steganography: unlike transportation theory, permutation coding al-
lows for optimum solutions in both scenarios. Furthermore permu-
tation coding makes geometric reasoning possible. Apart from the
analytic lower bounds on the minimum distortion given here, ex-
ploiting the geometry of the counterforensics setting can prove very
useful in scenarios where distances are not preserved between the
domain in which distortion is measured and the domain in which
histograms are obtained (for instance, FSD counterforensics [16]).

The main lesson learned here is that future forensic detectors
must take into account higher order statistics to be effective—like in
steganography. However, both forger and steganographer have the
upper hand as long as they stick to universal approaches (i.e. use of
empirical rather than theoretical statistical models). As a conclud-
ing remark, observe that, despite their intrinsic connection, counter-
forensics and steganography are not dual problems in the sense that
source coding and steganography are (see discussion in [9]), as they
do not involve complementary use of the same pair of functions.
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