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Abstract—Microscopic analyses of paper printing show some
regularly spaced dots whose the shape depends on the technology

and the tuning of the printer as well as on the paper properties.
The modeling and the identification of paper and ink interactions

are required for qualifying the printing quality, for controlling
the printing process and also for authentication issues. In this

paper, we propose to model the micrometric scan of document
printing by a binary response model whose the parameters

depend on the location and the shape of dots. A maximum
likelihood identification algorithm is provided, its performance

is assessed through simulations and true data. Furthermore, we
illustrate the benefice of a such model and estimation algorithm

in the case of authentication of printer from micro-tag made of
four dots.

I. INTRODUCTION

Preventing and discouraging unauthorized printed materials

is the expected achievement of the authentication methods.

Papers dealing with this subject can be categorized in two

strategies. The first one consists in embedding an extrinsic

signature such as secure tags in a printing [1], [2] while

the second one, which is the purpose of this paper, consists

in characterizing the intrinsic features of the printer [3].

As examples of intrinsic features, let us mention signature

consisting on the banding artifact coming from fluctuation of

the optical photoconductor angular velocity in case of laser

printers [4], dimple effect which are specific to inkjet printers

or also texture features [5] [6] in case of both technologies,

or the analysis of the unique print quality signature to

differentiate one printer technology/supplier from another [7].

The impact of the channel model for authentication systems

based on graphical codes was also investigated [8].

Because the digital printing consists in dots regularly spaced

according to the resolution of the printer, we are able to

consider the dot shape as the intrinsic feature of the printing

process. At the microscopic scale, each dot is a random

pattern whose shape depends on the technology, the setting

of the printer, the ink quality and/or the paper properties.

From the statistical point of view, we show that the digital

acquisition of these random dots can be modeled as a binary

response model based on a exponential power kernel which

depends on location parameters as well as shape parameters.

Because the latter enable to discriminate the printer, they

can be used for authentication purpose. In this paper, we

developed a maximum likelihood estimation algorithm of

these parameters and authentication performance is obtained

thank to the unsupervised identification algorithm.

The paper is organized as follows. In section II, the ex-

ponential power binary response model is described. From a

Newton-Raphson based optimization method with constraints,

an unsupervised maximum likelihood estimation is developed

in section III. Results are given in section IV. First, the

performances of the new algorithm are analyzed through

simulations. Then, the benefice of a such model and estimation

algorithm is illustrated in the case of authentication of printer

from micro-tag made of four dots. Conclusion is given in

section V.

II. EXPONENTIAL POWER BINARY RESPONSE MODEL

A few documents about image degradation models have

been proposed in the literature [9], [10], [11]. All of them

depend on the scale of modeling and the involved application.

Our work takes part in the micro-metric scale authentication

of documents so we are concerned by the modeling of micro-

metric scale document printing. As a consequence, large scale

distortions such as blurring, dot inversion and non-uniform

spreading of the ink are not considered. Moreover, since the

gray level variation of inked area is not informative at the

micro-metric scale, only the spatial distribution of the ink is

taken into account.

An ideal printing is a set of points distributed in the image

whose the resolution depends on the printer characteristics. At

the micro-metric scale, each dot is a cluster of ink particles

whose the shape and the number of particles depend on both

the technology of the printer and its tuning. This model had

been proposed in our paper [12] for the simpler case. For the

following, let’s note U = {Us}, s ∈ S , a random field made

of N ×N pixels that take their values in {0, 1}, where 0 and

1 stand respectively for black and white pixels.

U is the superposition of K dots distributed in S . Each dot

k can be considered as a set of N × N independent random

variables distributed according to a Bernoulli distribution.

From a statistical point of view, U is a binary response model

[13] with column and row indexes as explanatory variables

and an inverse link function ps,k:

P (Us,k = 0) := ps,k = nf(s|θk) (1)
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Figure 1. a) ps,k with σ2 = 50, n = 2
1

β πσ2Γ(1 + 1
β

) and β ∈

{0.7;1; 2; 5} b) realisations of the binary response model with the same
parameters.

when f has the properties of a probability density function

(pdf), the sum of ps,k over S is the expected number of

black pixels n. In order to encompass a large variety of

shape, f(s|θk) is chosen as the exponential power density

of mean µk, scale parameter Σ and shape parameter β.

f(s|θk) = EP2(s|µk, Σ, β) is defined as follows :

f(s|µk , Σ, β) =

exp

{

−1
2

(

(s− µk)
′

Σ−1(s − µk)
)β
}

π|Σ|
1

2 2
1

β Γ(1 + 1
β
)

(2)

Σ, β and n depend on the printer, its technology and its

tuning. {µk} is the location of the dot k, n plays the role

as the tone of ink while the scale parameter Σ decides the

largeness of the droplets and also their shape. On the other

hand, β controls the density of the black particles, it is more

uniform with larger β.

For simplicity, the exponential power distribution ps,k is

assumed to be circular, i.e. Σ = σ2I2 with I2 the 2-dimension

identity matrix. Moreover n ∈
[

0, 2
1

β πσ2Γ(1 + 1
β
)
]

in order

to constraint ps,k to be a probability. At a site s, the Bernoulli

parameter ps,k depends on its distance from the center of the

dot µk. Fig. 1 shows both ps,k and dots in case of four different

values of β. Let us note that f(s|θk) is the normal density if

β = 1.

Turning now to a print made of many dots. Let us denote

U a such binary response model and Us the pixel at site s.

Us = 1 if no ink particle emanating from one of the K dots

impinges the site s, that is Us,k = 1, ∀k ∈ {1, · · · , K}. On

another hand, a pixel Us is 0 if at least one Us,k = 0, ∀k ∈

{1, · · · , K}. As a consequence, Us can be modeled as :

Us =

K
∏

k=1

Us,k (3)

so that

P (Us = 0) = 1 −

K
∏

k=1

(1 − ps,k) (4)

Assuming that the random field is composed of independent

pixels, the resulting distribution is given by :

p(u) :=
∏

s

(

1 −

K
∏

k=1

(1 − ps,k)

)IS0
(s)(

K
∏

k=1

(1 − ps,k)

)IS1
(s)

(5)

with Si = {s|us = i} and IA(.) the indicator function of

the set A. The parameters of the binary response model are

denoted θ =
{

µ1, · · · , µK , σ2, β, n
}

.

III. ESTIMATION

In this section, the maximum likelihood estimator is de-

scribed. Since U is made of independent random variables,

the log-likelihood of all pixels is given by :

L (θ) =
∑

s∈S0

ln

(

1 −

K
∏

k=1

(1 − ps,k)

)

+
∑

s∈S1

K
∑

k=1

ln (1 − ps,k)

(6)

where σ2, β and n have to be consistent with:

g1 (θ) = n − 2
1

β πσ2Γ

(

1 +
1

β

)

≤ 0 (7)

g2 (θ) = −n ≤ 0 (8)

g3(θ) = −β ≤ 0 (9)

Because the maximum likelihood is not tractable, we resort

to an iterative algorithm consisting in successive estimation of

each parameters. The initialization of the algorithm is a rough

approximation of θ obtained by the k-mean++ method [14]

for the means. The parameters n, σ2 and β are respectively

initiated by.

n =
1

K

∑

s∈S

δus
(10)

σ2 = 0.8×
ng

π
(11)

β =
log 2

log ng − log(πσ2g)
(12)

with δ. the Kronecker symbol.

At each iteration of the algorithm, the mean are estimated from

the quasi Newton algorithm (QNA) based on the Broyden-

Fletcher-Golfarb-Shanno (BFGS) method. β, σ and n are

estimated from the QNA applied to the augmented Lagrangian

method [15]. At each iteration i, the estimation of σ2 consists

in minimizing the dual function C(σ2, λ, η), while the other

parameters are obtained from their previous estimation :

C(σ2, λ, η) = −L(σ2)+λg1(σ
2)+

η

2
max(0, g1(σ

2))2 (13)
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where λ ≥ 0 and η ≥ 0 are respectively the Lagrangian

multiplier and the penalization parameter. The initialization

of this step is such that η(0) > 1 and λ(0) ≥ 0.

The iteration j of the minimisation algorithm proceeds as

follows:

• New approximation: Minimizing the augmented La-

grangian C(σ2, λ(0), η(0)) with respect to σ2(j) from the

QNA with BFGS method.

• Stopping criterion:

| − ∂σ2L(σ2(j)) + λ(j)∂σ2g1(σ
2(j))| < ε,

|σ2(j)g1(σ
2(j))| < ε (14)

• Update:

λ(j+1) = max{0, λ(j) + η(j)g1(σ
2(j))}

η(j+1) = cη(j)

with c is usually chosen in the range [4, 10]. At each iteration,

the estimation of the other parameters follows the same

method, only the dual function is modified to take into account

the specific constraints of each parameter.

The clusters blind identification algorithm is summarized in

Al. 1.

Algorithm 1 Exponential power binary response model iden-

tification algorithm

Initialization

Initialize θ(0) = (µ
(0)
1 , µ

(0)
2 , ..., µ

(0)
K , σ2(0), β(0), n(0)) by

the K-mean++ algorithm, equations (10), (11) and (12)

Choose ε small.

while |L(θ(j−1)) − L(θ(j))| > ε

Estimate
{

µ
(j)
k

}

by BFGS method using

(σ2(j−1), β(j−1), n(j−1))
Estimate σ2(j) by augmented Lagrangian method with

(
{

µ
(j)
k

}

, β(j−1), n(j−1)) and constraint (7)

Estimate β(j) by augmented Lagrangian method with

(
{

µ
(j)
k

}

, σ2(j), n(j−1)) and constraints (7), (9)

Estimate n(j) by augmented Lagrangian method with

(
{

µ
(j)
k

}

, σ2(j), β(j)) and constraints (7), (8)

end while

IV. EXPERIMENTAL RESULTS

We highlight in the first subsection the estimation perfor-

mances of the cluster blind identification algorithm. In the

second subsection, we deal with authentication performance.

A. Simulated images

The performances of the identification algorithm are as-

sessed for various shapes, scales, relative position of clusters

and various expected number of particles per cluster. N = 100
simulations of 100 × 100 images of 2 dots are obtained for

σ2 = 50, β ∈ {2, 3, 5}, and n ∈ {50, 100, 165}. The accuracy

is analyzed through the bias and the standard deviation of the

estimator.

Tab. I and Tab.II show the performances of respectively the

location estimator (5) and σ2. The larger n and β are, the more

accurate is the algorithm. As it can be guessed, estimators are

more accurate with higher value of β and the expected number

of particles n firstly because particles are more concentrated

around the centers with larger β (see Fig. 1) and secondly, the

mean number of particle is higher.

n 50 100 165

β Avg. Std. Avg. Std. Avg. Std.

2 0.82 0.33 0.55 0.26 0.39 0.24

3 0.63 0.40 0.40 0.15 0.31 0.26

5 0.51 0.33 0.34 0.38 0.21 0.11

Table I
THE AVERAGE AND STANDARD DEVIATION OF THE DISTANCES BETWEEN

ESTIMATED CENTERS AND TRUE ONES.

n 50 100 165

β Bias Std. Bias Std. Bias Std.

2 6.72 11.54 2.36 6.49 1.34 3.93

3 2.03 7.13 0.66 3.85 0.41 2.09

5 0.31 4.84 0.26 3.03 -0.05 1.98

Table II
THE BIAS AND STANDARD DEVIATION OF THE ESTIMATORS OF σ2 .

β 2 3 5

n Bias Std. Bias Std. Bias Std.

50 0.74 1.98 0.90 2.28 5.64 5.55

100 0.16 0.34 0.21 0.55 3.71 2.5

165 0.08 0.202 0.05 0.34 2.50 0.721

Table III
THE BIAS AND STANDARD DEVIATION OF THE ESTIMATORS OF β .

About the performances of the estimator of β given in table

III, the best accuracy is obtained for the largest n. Moreover,

the estimator of β is better when it is small. This result is

explained from the fact that two kernels are quite similar to

each other when their β are large.

n 50 100 165

β Bias Std. Bias Std. Bias Std.

2 0.8842 4.46 0.8336 5.69 1.1884 6.18

3 0.33 4.17 0.8776 5.19 1.4147 5.34

5 -0.1923 4.25 -0.0178 5.32 1.9496 6.54

Table IV

THE BIAS AND STANDARD DEVIATION WHILE APPROXIMATING n.

The bias and the standard deviation of the estimator of n are

given in table IV. It seems that the estimator is less accurate

with large n. Nevertheless, when focusing on the relative error,

the algorithm performs better with a lot of particles, which is

also true for estimating other parameters.

6279



4

B. Authentication

In this section, printer authentication is performed from

micro-tag consisting in four printed dots. In this experiment,

we have considered 40 tags printed on a same paper with

the same ink, the half coming from the Ricoh Aficio MP

6001 printer and the remain coming from the Ricoh Aficio

MP C2800 laser printer. The shape parameters (σ2, n, β) of

these 40 tags have been estimated by the algorithm 1. The

estimations are displayed in Fig. 2 which shows respectively

n vs. σ2 and σ2 vs. β. Each printer is a 3D Gaussian

cluster in the space of parameters. Their location and shape

are respectively given by their mean and their covariance

matrix (Tab. V ). Basic authentication consists in classifying

a tag in one of the two printer classes. In our case, the

normal distributions of the shape parameters enable to use

the maximum likelihood classification method. After calcula-

tion, we obtain 0.035 for the probability of error, that is a

probability of correct classification 0.965. This result cannot

be generalized to any printers, it only points out the relevance

of the exponential power binary response model for printed

dots at the microscopic scale.

β σ2 n

MP 6001 3.10 1165.9 3525.2

MP C2800 2.356 449.1 720.67

7.4e-3 0.207 -0.40

0.207 55377 27222

-0.402 27222 84358

0.1 27.6 68.81

27.6 14681 21329

68.81 21329 51628.9

Table V
THE MEAN VALUE OF THE ESTIMATORS AND THEIR COVARIANCE MATRIX,

MP 6001 (RIGHT) AND MP C2800 (LEFT).

V. CONCLUSIONS

In this paper, we have proposed an original model for

the microscopic scale printing and a maximum likelihood

unsupervised identification algorithm. Performances of the

estimator have been assessed through simulations and we have

show the accuracy of the exponential power based binary

response model to describe printing at the microscopic scale.

Shape parameters strongly depends on the printer technology,

its tuning as well as the paper and the ink properties. Au-

thentication of printers from micro-tags has been performed

thanks to the accuracy of both the binary response model and

the maximum likelihood algorithm.
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