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ABSTRACT
PRNU-based techniques guarantee a good forgery detection perfor-
mance irrespective of the specific type of forgery. The presence or
absence of the camera PRNU pattern is detected by a correlation test.
Given the very low power of the PRNU signal, however, the corre-
lation must be averaged over a pretty large window, reducing the
algorithm’s ability to reveal small forgeries. To improve resolution,
we estimate correlation with a spatially adaptive filtering technique,
with weights computed over a suitable pilot image. Implementation
efficiency is achieved by resorting to the recently proposed guided
filters. Experiments prove that the proposed filtering strategy allows
for a much better detection performance in the case of small forg-
eries.

Index Terms— Digital forensics, forgery localization, photo re-
sponse non-uniformity, guided filters.

1. INTRODUCTION

Image forgery localization is a very challenging task due to the large
variety of manipulations a malicious user can perform by means of
more and more sophisticated image editing tools [1]. In recent years,
research has focused especially on passive techniques which retrieve
traces of manipulations from the sole analysis of the image content.
The image acquisition phase, in particular, is a valuable source of in-
formation as it often leaves peculiar traces, related to characteristics
of the lens [2, 3], the color filter array (CFA) pattern [4, 5], or the
sensor array [6, 7]. Indeed, one of the most promising approaches
to date relies on the photo response non-uniformity (PRNU) noise.
The PRNU arises from tiny imperfections in the silicon wafer used
to manufacture the imaging sensor [8]. These physical differences
generate a unique sensor pattern, specific of each individual camera,
constant in time, and independent of the scene, which can be there-
fore considered as a sort of camera fingerprint and used as such to
accomplish forgery detection or camera identification tasks. All the
different types of tampering (copy-move, splicing, retouching) re-
move the original PRNU from the target area, enabling the detection
of the forgery irrespective of the type of attack. PRNU-based tech-
niques have proven quite robust to several forms of image processing
[7, 9], including rotation, rescaling, and JPEG compression at rela-
tively low rates (e.g., Q=75). Given these precious properties, an
intense research activity began on this topic as soon as the potential
of the approach was recognized.

The first PRNU-based technique is proposed [6] in 2006. Blocks
extracted from the estimated PRNU of the target image are com-
pared with homologous blocks of the camera PRNU (estimated in
advance from a set of sample images) and a tampering is declared
whenever the normalized correlation falls below a given threshold.
However, since the PRNU is a very weak signal, estimated by means

of imperfect tools, its traces can be easily overwhelmed by noise in
some regions of the image characterized by saturation or strong tex-
tures, leading to false alarms. Therefore, the same Authors propose
in [7] a new version which reduces false alarms by identifying the
potentially troublesome regions (through a predictor) and declaring
them as genuine irrespective of the observed correlation index. Sim-
ilar considerations guide the algorithm proposed in [10], where only
regions with high signal quality are used, discarding those heavily
deteriorated by irrelevant noise. In [11] a strategy to reduce the in-
terference of scene details on the PRNU is proposed, while in [12]
the suppression of non-unique artifacts is considered. These include,
for example, JPEG block artifacts, and CFA interpolation artifacts,
both characterized by regular linear spatially periodic patterns, rela-
tively easy to correct [13]. Non-unique artifacts may lead to wrong
results, especially in camera identification [14], because of the in-
creased similarity between the PRNU fingerprints of a different de-
vices with similar characteristics. In [15], canonical correlation anal-
ysis is used to increase the reliability of the decision variables. We
ourselves proposed several improvements to the basic algorithm of
[6, 7] concerning a better method for PRNU estimation based on
nonlocal filtering [16], the adoption of a variable-size analysis win-
dow to improve resolution [17] and, more recently, the reformulation
of PRNU-based forgery detection as a Bayesian estimation problem
[18, 9]. A forgery detection algorithm based on the suitable fusion
of a PRNU-based technique with other forensic tools [19] won the
1st IEEE IFS-TC Image Forensics Challenge (Phase 2) [20], closed
in november 2013.

This work, following the path initiated in [17], aims at improv-
ing the resolution of PRNU-based algorithms. In fact, since the
PRNU pattern is a very weak signal, it can be reliably detected only
by jointly processing a large number of image samples, through a
sliding-window analysis. The size of the sliding-window dictates
therefore the effective resolution of the algorithm, causing forgeries
smaller than the analysis window to remain often undetected. In [17]
we resorted to a preliminary image segmentation to adapt the analy-
sis window to the shape of candidate forgeries. Segmentation, how-
ever, is itself a source of errors, and the experimental analysis proved
the heavy impact of such errors on performance. Here, we replace
hard segmentation with a more flexible soft-segmentation strategy,
using adaptive weights in the analysis window, computed on the ba-
sis of image content. A fast and effective implementation of this
concept is obtained by resorting to guided filters [21]. Experiments
prove that the proposed algorithm provides much better results on
critical small-size forgeries, with a negligible increase in complex-
ity. In the following, Section 2 provides the necessary background
material, Section 3 describes the proposed algorithm and Section 4
analyzes its performance by numerical experiments. Finally, Section
5 draws conclusions.
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2. BACKGROUND

Let y ∈ RN be a digital image observed at the camera output, where
yi indicates the value at site i, either as a single color band or the
composition of multiple color bands. Let us assume, in a simplified
model [7, 8], that y can be written as

yi = (1 + ki)xi + θi = xiki + xi + θi (1)

where x is the ideal noise-free image, k the camera PRNU, and θ
an additive noise term which accounts for all types of disturbances.
The PRNU k is by now our signal of interest, very weak w.r.t. both
additive noise θ and ideal image x. To increase the signal-to-noise
ratio, we subtract from (1) an estimate of the ideal image, x̂ = f(y),
obtained by means of a denoising algorithm, obtaining the so-called
noise residual

ri = yi − x̂i = yiki + (xi − yi)ki + (xi − x̂i) + θi

= yiki + ni (2)

where, for convenience, k multiplies the observed image y rather
than the unknown original x. and all disturbances have been col-
lected in a single noise term n.

When a section of the image is tampered with, for example by
replacing it with material drawn from other regions, the PRNU term
is cancelled. Therefore, to decide about a possible forgery, PRNU-
based techniques try to discover whether the PRNU term is present
or not. In the following we briefly describe the technique proposed
by Chen et al. [7], based on sliding-window analysis, referring the
reader to the original paper for more detail.

As a preliminary step, the true camera PRNU pattern, k, must be
reliably estimated, which requires that either the target camera, or a
large number of photos taken by it, are available. Of course, this hy-
pothesis is not always satisfied in real-world situations, representing
the main limitation of this approach. Given k, the detection is formu-
lated as a binary test between hypothesis H0 that the camera PRNU
is absent (i.e. the pixel has been tampered with) and hypothesis H1

that the PRNU is present (i.e. the pixel is genuine):{
H0 : ri = ni
H1 : ri = zi + ni

(3)

with zi = yiki. The decision is based on the normalized correlation
between rWi

and zWi
, namely, the restrictions of r and z, respec-

tively, to a window Wi centered on the target pixel:

ρi = corr(rWi
, zWi

) =
(rWi

− rWi
)� (zWi

− zWi
)

‖rWi
− rWi

‖ · ‖zWi
− zWi

‖ (4)

where � denotes inner product, and x indicates mean of x. The
algorithm then compares the correlation with a threshold γ1

ûi =

{
0 ρi < γ1

1 otherwise (5)

where ûi ∈ {0, 1} is the algorithm output, 0 for forgery and 1 for
genuine pixel. The threshold is selected according to the Neyman-
Pearson criterion so as to guarantee a suitably small false acceptance
rate (FAR) Pr(ûi=1 | ui=0), with ui ∈ {0, 1} the true pixel class.
Once fixed the FAR, however, there is no guarantee that the other
type of error, the false rejection rate (FRR), remain reasonably small.
In fact, under hypothesis H1, the decision statistic is influenced by
the image content. Even in the absence of forgery, the correlation
might happen to be very low when the image is dark, saturated, or

heavily textured. In [7] this problem is addresses by means of a pre-
dictor which, based on local images features, computes the expected
value ρ̂i of the correlation index under hypothesis H1. When ρ̂i is
too low, indicating that no reliable decision can be made, the pixel is
always labeled as genuine, the less risky decision, irrespective of the
value of ρi. Therefore, the test becomes

ûi =

{
0 ρi < γ1 AND ρ̂i > γ2

1 otherwise (6)

with γ2 chosen heuristically by the user. Better strategies are con-
sidered in [18] and [9] where decisions are made jointly on all pixels
based on a Bayesian/MRF modeling.

Although the above description remains necessarily at a concep-
tual level, it is worth going into some more detail for what concerns
the decision statistic of equation (4). Given the low, and spatially
varying, signal-to-noise ratio characterizing this problem, the two
conditional pdf’s pρ|H0

(·) and pρ|H1
(·) can overlap significantly,

causing large probabilities of error. To obtain a reasonable sepa-
ration between them, one is forced to compute the correlation over
a large window, for example, 128×128 pixels, as done in [7]. By
so doing, however, one is implicitly renouncing to detect forgeries
much smaller than the window size (or just much thinner). In these
cases, in fact, the analysis window comprises pixels of both types,
forged and genuine, providing a highly unreliable decision statistic.
In the original algorithm, in fact, detected forged regions smaller
than 64 × 64 pixels (one fourth of the window size) are canceled
right away, as they are more easily generated by random errors than
by actual forgeries. Low resolution is therefore a major problem of
this algorithm.

3. PROPOSED METHOD

To gain a better insight into our estimation problem let us elaborate
some more on equation (4) introducing some simplifications. First of
all, we neglect the means (which are typically negligible), and then
focus only on the scalar product on the numerator, considering that
the terms at the denominator serve only to normalize the correlation.
Remember that z = yk is the camera PRNU multiplied point-wise
by the input image and, likewise, r = hy + n is the noise resid-
ual, with h the observed PRNU which might or might not coincide
with k. Therefore, if we divide all terms point-wise by y, we obtain
eventually the quantity

τi =
1

|Wi|
∑
j∈Wi

rj
yj

zj
yj

=
1

|Wi|
∑
j∈Wi

(hj +
nj
yj

)kj (7)

By defining a new noise field η = nk/y, and introducing generic
weights ωij , eq.(7) becomes

τi =
∑
j∈Wi

ωij(hjkj + ηj) (8)

which can be interpreted as the linear filtering of the image hk af-
fected by the additive noise η. In [7] the weights are all equal to one
1/|Wi|, hence, a simple boxcar filtering is carried out.

Assuming that the whole analysis window is homogeneous, ei-
ther genuine (h = k) or forged (h 6= k) and, for the sake of simplic-
ity, that y is constant over the window, so that VAR[ηi] = σ2

η , we
can characterize the random variable τ

E[τ ] =

{
〈k2〉i h = k

0 h 6= k
(9)
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Fig. 1. Sample results. From left to right, original and forged image, correlation field predicted, and computed by boxcar and guided filtering.

VAR[τ ] = σ2
η

∑
j

ω2
ij (10)

where 〈k2〉 is the power of the camera PRNU estimated over Wi. In
this condition, using uniform weights ωij = 1/|Wi| is indeed opti-
mal, as it minimizes the variance of the estimate, and maximizes the
probability of deciding correctly. However, if the analysis window is
heterogeneous, that is, part of the pixels are genuine and part forged,
the estimate will suffer a systematic bias, namely, the means will not
be 0 or 〈k2〉 anymore, but some intermediate values, with an heavy
impact on the decision reliability. In this case, the uniform weights
are no more optimal, in general, and one should instead reduce the
influence of pixels non homogeneous with the target by associating
a small or even null weight with them.

This is exactly the problem arising in the case of small-size forg-
eries. By using a large analysis window with fixed weights we hap-
pen to include pixels of different nature, and the decision variable
becomes strongly biased and basically useless, even in favourable
(bright, smooth, unsaturated) areas of the image. If we could find and
include in the estimation only predictors homogeneous with the tar-
get, all biases would disappear, although at the cost of an increased
estimation variance.

The bias / variance trade-off is indeed well-known in the denois-
ing literature. This problem has received a great deal of attention,
recently, in the context of nonlocal filtering [22, 23, 24], the cur-
rent state of the art in denoising, where predictor pixels are weighted
based on their expected similarity with the target. The similarity, in
its turn, is estimated by comparing patches of pixels centered, re-
spectively, on the target and on each candidate predictor pixel: when
the patch surrounding a predictor is similar to the target patch, the
predictor is assumed to be similar to the target, and a large weight is
associated with it. This approach cannot work as is with our noise-
like input image, rz, as it lacks the geometrical structures that help
computing a meaningful similarity measure. However, we can take
advantage of the original observed image y, using it as a “pilot”
(again a well-known concept in denoising) to compute similarities,
and applying the resulting weights in the actual filtering of the rz
field.

Unfortunately, nonlocal filtering, with its intensive patch-based
processing, is characterized by high computational complexity,
which becomes unacceptable in our case, where the weak PRNU
signal calls for large filtering windows. We resort therefore to a
different implementation of this basic idea, based on guided filter-
ing, a recently proposed [21] technique which implements nonlocal
filtering concepts by leveraging heavily on the use of a pilot image
associated with the target image.

We recall here the basics of guided filtering following closely
the development and notation used in [21], and referring the reader
to the original paper for a more detailed treatment. Let p be the
image to be filtered, q the filter output, and I a pilot image assumed
to bear valuable information on p. We consider linear filtering, in the
form

qi =
∑
j

ωijpj (11)

Then, we assume that, locally to each pixel i, q depends linearly on
I , that is

qj = aiIj + bi, ∀j ∈ Ωi (12)

where Ωi is a square window of radius R centered on i. The pa-
rameters ai and bi are chosen to minimize over Ωi the squared error
between observed image and model

(ai, bi) = arg min
(a,b)

∑
j∈Ωi

[(aiIj + bi − pj)2 + εa2
i ] (13)

with ε a regularizing parameter that penalizes large values of a. The
optimal values are

ai =
1

|Ωi|
∑
j∈Ωi

Ij pj − Īi p̄i
σ2
i + ε

(14)

bi = p̄i − aiĪi (15)

where x̄i indicated average of x over Ωi and σ2
i is the variance of I

over Ωi. By substituting the optimal values back into (12) we obtain
an estimate of qj for all output pixels in the window Ωi. Each of
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Fig. 2. ROCs obtained with boxcar and guided filtering with forgeries of size: 48×48, 64×64, 96×96, and 128×128 pixels.

these pixels, however, falls in several such windows, and hence, to
obtain the final filtered value, we average all such estimates

qj =
1

|Ωj |
∑
i∈Ωj

(aiIj + bi) = ā Ij + b̄ (16)

which is the final expression of the linear filtering process of p
guided by the pilot image I under the local linear model (12). The
main reason for reporting above all the intermediate expressions
is to point out that all the computation amounts to a few boxcar
filtering, applied to p, I , I2, a, and b, and carried out by integral
image techniques with negligible complexity.

For our algorithm, of course, the input image is the product rz,
the output is the decision statistic ρ, while the pilot (scalar) image
can be a combination of the color bands of the original image, y or
its denoised version x, or any suitable field of features extracted from
these images. By tuning the two parameters of the filter, the window
radius R and the regularizing parameter ε, the influence of the pilot
image in the filtering process can be modulated at will.

4. EXPERIMENTAL RESULTS

To prove the potential of the proposed approach we begin by show-
ing, in Fig.1, a few sample images and the corresponding correlation
fields. The image on the first row presents a large forgery, easily
detectable in both the correlation fields (last two columns) as the
region is much darker than in the predicted field (middle column).
On the second and third row, instead, we have quite small forgeries,
which leave little or no trace in the field computed by boxcar fil-
tering, while are clearly detectable in the field obtained by guided
filtering. Although these last examples are very favourable for the
guided filtering approach, due to the high contrast between forgeries
and background, they make clear that the original image can help
making a better decision.

A more extensive experimental analysis is presented in Fig.2
where we show the receiver operating curves (ROC) obtained us-
ing the original boxcar filtering and the proposed guided filtering.
To ensure a fair comparison, the algorithm proposed in [7] is used
in all cases, with its wavelet-based denoising filter [25] and the two-
threshold test, and we change only the way the correlation field is
computed. In particular, for guided filtering we consider three im-
plementations, using as pilots, respectively, i) the grayscale version
of the original image y, ii) the RGB version of the same image, and
iii) the vectorial image composed by the four features [7] used to de-
sign the correlation predictor. We use a test set of 200 uncompressed
768×1024-pixel images with a square forgery at the center, drawn
at random from a different image. The camera (a Canon EOS-450D)

PRNU is estimated off-line on a separate training set, used also to
design the predictor. Each ROC is the upper envelope of pixel-level
(PD, PFA) points obtained as the algorithm parameters vary. For
guided filtering we used ε =0.16 and R =32, which corresponds to
an analysis window of 128×128. This window size is also used for
boxcar filtering, and in all cases, to allow a fair comparison, the min-
imum size of acceptable detected forgeries was lowered to 32×32
pixels. Comparison is carried out separately for very-small, small,
medium and large forgeries. With forgeries of dimension 48×48
pixels and 64×64 pixels (first two graphs), guided filtering guaran-
tees a large performance improvement over boxcar filtering, synthe-
sized by the area under curve (AUC) figure which grows from 0.63
to 0.78 in the first case and from 0.71 to over 0.85 in the second.
With medium-size forgeries, 96×96 pixels, the performance gain
is much more limited, with the AUC growing from 0.85 to 0.90,
and becomes almost negligible, as expected, with larger 128×128
forgeries. No significant difference is observed, instead, as the pilot
image changes, with the RGB pilot only slightly preferable to the
others.

5. CONCLUSIONS

We proposed a new strategy to improve the resolution of PRNU-
based forgery detection techniques. The basic idea is to exploit the
image structure to better estimate the correlation field on which de-
cisions are based. This is obtained here by resorting to the guided
filtering approach, obtaining a very fast algorithm, characterized by
a performance much superior to the reference technique when small
forgeries are involved.

In the ongoing research, we are experimenting with other pilot
images, studying in more depth the dependance on the algorithm pa-
rameters, and assessing performance in a wide variety of conditions,
including various forms of distortion, and JPEG compression.
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