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Université de Toulouse, UPS-CNRS-OMP

14 avenue Edouard Belin
F-31400 Toulouse, France

yannick.deville@irap.omp.eu

Alain Deville

IM2NP
Aix-Marseille Univ

Campus Scientifique Saint-Jérôme
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ABSTRACT

In the framework of Blind Quantum Source Separation, we inves-

tigate the adaptation of a separating system which receives coupled

quantum bit (qubit) states and processes them with quantum means

in its feedforward path, to uncouple them. We propose the first sepa-

ration principle which ensures that the output qubit states of this sys-

tem are disentangled and that they restore the non-entangled source

qubit states up to limited indeterminacies. This separation principle

exploits measurements of output spin components along two direc-

tions and has some links with the non-quantum Independent Compo-

nent Analysis (ICA) principle. It opens the way to various practical

separation criteria and algorithms, some of which are described here.

Index Terms— blind source separation, quantum bit (qubit), en-

tanglement, unsupervised learning, independent component analysis

1. PRIORWORK AND PROBLEM STATEMENT

Within the information processing (IP) domain, various fields de-

veloped very rapidly during the last decades. One of these fields is

Source Separation (SS) and especially blind SS (BSS), which was

particularly introduced in [5],[16],[18] and is now well-established

in the signal processing community [2],[3],[4],[6],[10],[17],[19].

Until recently, all (B)SS investigations were performed in a “clas-

sical”, i.e. non-quantum, framework. Independently from (B)SS,

another growing field within the overall IP domain is Quantum In-

formation Processing (QIP) [1],[15],[20],[21],[23]. QIP is closely

related to Quantum Physics (QP). It uses abstract representations of

systems whose behavior is requested to obey the laws of QP. This

already made it possible to develop new and powerful IP methods,

which manipulate the states of so-called quantum bits, or qubits.

We recently bridged the gap between classical (B)SS and

QIP/QP, by introducing a new field, Quantum Source (or Signal)

Separation (QSS), first proposed in [7] and then especially detailed

in [13] (see also [13] for QSS applications). The QSS problem

consists in restoring the information contained in individual quan-

tum source signals, eventually only using the mixtures (in SS terms

[13]) of states of these qubits which result from their undesired

coupling. The QSS problem gives rise to different configurations,

especially depending whether the processing means used to restore

the source information from the observed mixtures are of classical

and/or quantum nature, and whether this separation is performed

non-blindly or blindly. Hereafter, as in most of our previous papers,

we study the blind configuration (i.e. when the parameter values of

the mixing operator are initially unknown), which is more difficult to

handle. Moreover, we here again consider the case when all qubits

physically consist of spins 1/2, described in the standard basis.

In almost all our previous works, we solved the blind QSS

(BQSS) problem by first converting the observed quantum data into

classical-form signals and then processing these signals with classi-

cal means. We thus established various properties and derived cor-

responding processing methods in [7],[8],[9],[11],[12],[13]. These

methods allow one to efficiently process the data derived from quan-

tum/classical conversion. However, this initial conversion yields sig-

nificant limitations, as detailed in [14] (in particular, this approach

requires many qubit initializations). To reduce them, a very different

approach consists in using quantum processing, especially in the

“feedforward path” of the separating system, i.e. in its part which

receives the observed mixed data (coupled qubits) and which outputs

the estimated source information. We only reported a preliminary

version of such a system in [14]. More precisely, a complete BQSS

investigation consists in defining the same items as in classical BSS,

namely: (1) considered mixing model, (2) proposed separating sys-

tem structure, (3) proposed separation principle (see e.g. forcing

output independence in classical ICA) preferably with an analysis

of resulting indeterminacies, (4) proposed separation criterion (see

e.g. output mutual information minimization in classical ICA), (5)

proposed separation algorithm (e.g. gradient-based minimization of

cost function). In [14], we only addressed the above first three items.

Moreover, we showed that the separation principle proposed in [14]

yields significant separation indeterminacies. This occurs because

that principle only uses measurements of the spin components of the

output qubits of the separating system along a single axis, Oz.

In the current paper, we consider the same mixing model as in

[14] (see Section 2), and we keep the same feedforward path in the

separating system (see Section 3). We then present two major types

of extensions as compared with the investigation that we reported in

[14]: (i) we first propose a new feedback path for the separating sys-

tem and associated separation principle, based on output measure-

ments in two directions, which strongly reduces separation indeter-

minacies (see Section 4), (ii) using the above satisfactory separation

principle, we then propose corresponding separation criterion and

algorithm (see Section 5). We then conclude in Section 6.

One should note that, whereas we are here concerned with con-

figurations where one aims at extracting information about quantum

states after undesired coupling (with Heisenberg’s model), on the

contrary a two-qubit gate using liquid NMR takes advantage [22] of

the scalar coupling. Besides, as detailed in [13], quantum state to-

mography and quantum process tomography techniques [20], which

were e.g. used in [24] for two-qubit systems, cannot achieve BQSS.
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2. MIXINGMODEL

As stated above, qubits are used instead of classical bits for perform-

ing computations in the field of QIP [20]. In [14], we first detailed

the required concepts for a single qubit and then presented the type

of coupling between two qubits that we consider and that defines the

“mixing model”, in (B)SS terms, of our investigation. We hereafter

summarize the major aspects of that discussion, which are required

in the current paper.

A qubit with index i considered at a given time t0 has a quantum

state. If this state is pure, it belongs to a two-dimensional space Ei

and may be expressed as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that we

hereafter denote |+ 〉 and |− 〉, whereas αi and βi are two complex-

valued coefficients constrained to meet the condition

|αi|
2 + |βi|

2 = 1 (2)

which expresses that the state |ψi(t0)〉 is normalized.

In the BQSS configuration studied in this paper, we first consider

a system composed of two qubits, called “qubit 1” and “qubit 2”

hereafter, at a given time t0. This system has a quantum state. If this

state is pure, it belongs to the four-dimensional space E defined as

the tensor product (denoted ⊗) of the spaces E1 and E2 respectively

associated with qubits 1 and 2, i.e. E = E1 ⊗ E2. We hereafter

denote B+ the basis of E composed of the four orthonormal vectors

|++〉, |+−〉, |−+〉, |−−〉, where e.g. |+−〉 is an abbreviation for
|+〉⊗|−〉, with |+〉 corresponding to qubit 1 and |−〉 corresponding
to qubit 2. Any pure state of this two-qubit system may then be

expressed as

|ψ(t0)〉 = c1(t0)| + +〉 + c2(t0)| + −〉

+c3(t0)| − +〉 + c4(t0)| − −〉 (3)

and has unit norm. It may also be represented by the corresponding

vector of complex-valued components in basis B+, which reads

C+(t0) = [c1(t0), c2(t0), c3(t0), c4(t0)]
T

(4)

where T stands for transpose. In particular, we study the case when

the two qubits are independently initialized, with states defined by

(1) respectively with i = 1 and i = 2. We then have

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (5)

= α1α2| + +〉 + α1β2| + −〉

+β1α2| − +〉 + β1β2| − −〉. (6)

Besides, we consider the case when the two qubits, which corre-

spond to two spins 1/2, have undesired coupling after they have been

initialized according to (5). The considered coupling is based on the

Heisenberg model with a cylindrical-symmetry axis collinear to Oz,
the direction common to the applied magnetic field and to our first

chosen quantization axis. This coupling may be represented as

C+(t) = MC+(t0) (7)

where C+(t) is the counterpart of (4) at time t and defines the cou-

pled state |ψ(t)〉 of the two-qubit system at that time. In basis B+,

the evolution of the system’s quantum state from t0 to t is thus repre-
sented by the matrixM of (7). Our previous calculations show that,

for the considered type of coupling

M= QDQ
−1 = QDQ (8)

with

Q = Q
−1 =

2

6

6

4

1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

3

7

7

5

(9)

andD equal to

2

6

6

4

e
−iω1,1(t−t0) 0 0 0

0 e
−iω1,0(t−t0) 0 0

0 0 e
−iω0,0(t−t0) 0

0 0 0 e
−iω1,−1(t−t0)

3

7

7

5

(10)

where the imaginary unit i, present e.g. in e−iω1,1(t−t0), should not

be confused with the qubit index i. The four real (angular) frequen-

cies ω1,1 to ω1,−1 in (10) depend on the physical setup and their

values are unknown in practice.

3. FEEDFORWARD PATH OF SEPARATING SYSTEM

The part of the separating system of [14] kept here consists of its

feedforward path, which uses quantum means for deriving its quan-

tum output state from its quantum input state, which is the above

coupled state |ψ(t)〉. Although this part of the system is intrinsically

of quantum nature, this paper does not require detailed knowledge

about quantum physics, because we here build upon the principles

and results detailed in [14] and thus only use linear algebra tools.

The output quantum state of our separating system is denoted as

|Φ〉 = c1| + +〉 + c2| + −〉 + c3| − +〉 + c4| − −〉. (11)

It may also be represented by the corresponding vector of compo-

nents of |Φ〉 in basis B+, denoted as

C = [c1, c2, c3, c4]
T
. (12)

We then have

C = UC+(t) (13)

where U defines the unitary quantum-processing operator applied by

our separating system to its input C+(t). As justified further in this

paper, we choose this operator U to belong to the class defined by

U = QD̃Q (14)

with D̃ =

2

6

6

4

eiγ1 0 0 0

0 eiγ2 0 0

0 0 eiγ3 0

0 0 0 eiγ4

3

7

7

5

(15)

where γ1 to γ4 are free real-valued parameters.

4. FEEDBACK PATH AND SEPARATION PRINCIPLE

The above configuration yields a BQSS problem which may be de-

fined as follows. The overall quantum “source state” |ψ(t0)〉 in-

volved in this problem is created by independently initializing the

two qubit states |ψ1(t0)〉 and |ψ2(t0)〉 at a given time t0. The cor-
responding “observed mixture” (in SS terms) is the quantum state

|ψ(t)〉 of this two-qubit system available at a later time t. It has a

much more complex form than |ψ(t0)〉, due to undesired coupling:

it takes the form (3) with t0 replaced by t and with components de-

fined by (7). Thus, in general, it cannot be expressed as a tensor
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product, unlike the initial state (5). In QP terms, the general pure

state (3) with t0 replaced by t is entangled, whereas the pure state (5)

is not entangled. The information, which was originally separately

available for each qubit in each of the two initial states |ψi(t0)〉, is
thus “mixed” (in the QSS sense1) in the final state |ψ(t)〉 of the two-
qubit system. Only using (one or several values of) this final state

|ψ(t)〉, we aim at restoring the information contained in the initial

states |ψi(t0)〉 of the two qubits, possibly up to some indetermina-

cies as in classical BSS. To this end, we use the feedforward path

of the separating system defined in Section 3. For suitable values of

its free parameters γ1 to γ4, this system is indeed able to restore the

source state: it may easily be shown that setting these parameters so

that D̃ = D−1 yields U = M−1, which results in C = C+(t0)

and |Φ〉 = |ψ(t0)〉. However, the condition D̃ = D−1 cannot be

used as a practical procedure for directly assigning D̃, because D

is unknown. Instead, a procedure for adapting the parameters γ1 to

γ4 of D̃ by only using the observed mixture(s) is therefore required,

which corresponds to a blind (quantum) source separation problem.

The general type of adaptation procedure that we started to con-

sider in [14] for adapting γ1 to γ4 consists in first converting the

quantum output |Φ〉 of the separating system2 into classical-form

data by means of measurements, and then processing the latter data

with classical processing means. We thus used a classical-processing

feedback path, from the output of the structure associated with (14),

to its adaptive block D̃. The measurements that we used in [14],

consist in simultaneously measuring the components along Oz axis

of the spins of the two qubits which define the output of our separat-

ing system. This couple of measurements has four possible values,

namely (+ 1
2
,+ 1

2
), (+ 1

2
,− 1

2
), (− 1

2
,+ 1

2
) and (− 1

2
,− 1

2
) in normal-

ized units. Their respective probabilities are

P1z = |c1|
2
, P2z = |c2|

2
, P3z = |c3|

2
, P4z = |c4|

2
. (16)

These probabilities may be estimated in practice, by using our RWR

procedure [14], which consists in first Repeatedly Writing (i.e.

preparing) the same source state and Reading (i.e. performing the

above type of measurements for) the corresponding output of our

separating system, and then computing the sample frequencies of all

four possible measurement outcomes. The method that we proposed

in [14] for adapting γ1 to γ4 consists in constraining them to take

values such that

P1zP4z = P2zP3z. (17)

Briefly, we selected this adaptation principle because our calcula-

tions show that the output of our separating system is non-entangled

if and only if

c1c4 = c2c3 (18)

and this condition (18) implies (but is not equivalent to)

|c1c4| = |c2c3| (19)

which is equivalent to condition (17), due to (16)3. Enforcing (17)

is therefore an attractive first step towards output disentanglement

and hence BQSS but, as shown by our calculations in [14], it only

restores the source state up to significant indeterminacies and, espe-

cially, it yields a still entangled output quantum state. Our first goal

in the current paper is therefore to improve this separation principle.

1Here, we are not talking about “mixtures” in the QP sense, i.e. we are
not considering quantum states which are statistical mixtures.

2As detailed in [14], the overall proposed approach does not use the same
instance of |Φ〉 both as the output of the complete system and in its internal
feedback path, because this would not be compatible with the so-called “no-
cloning theorem” for quantum states.

3This approach also has a link with classical ICA, as explained in [14].

To this end, we still use a classical-processing feedback path,

but we enrich the information that it processes, by also measuring

the components alongOx axis (orthogonal toOz) of the spins of the
two qubits which define the output of our separating system4. This

is the very first time we use measurements along Ox in all our QSS

investigations, i.e. since [7]. The couple of measurements along Ox

axis also has four possible values, namely (+ 1
2
,+ 1

2
), (+ 1

2
,− 1

2
),

(− 1
2
,+ 1

2
) and (− 1

2
,− 1

2
) in normalized units. Their probabilities

are respectively denoted as P1x, P2x, P3x, P4x. We still consider a

quantum state which is defined by (11), and which is therefore ex-

pressed with respect to vectors associated with the Oz axis. Quan-

tum calculations not detailed here show that the above probabilities

read

P1x =
1

4
|c1 + c2 + c3 + c4|

2
(20)

P2x =
1

4
|c1 − c2 + c3 − c4|

2
(21)

P3x =
1

4
|c1 + c2 − c3 − c4|

2
(22)

P4x =
1

4
|c1 − c2 − c3 + c4|

2
. (23)

These probabilities are used in the extended separation principle that

we propose in this paper, which consists in adapting γ1 to γ4 so that

they meet two constraints, namely (17) and

P1xP4x = P2xP3x. (24)

The latter condition is selected due to its symmetry with (17). More-

over, it has a link with classical ICA: considering two classical

binary-valued random variables (RVs), with outcomes equal to ± 1
2

for both RVs, and denoting as P1x, P2x, P3x, P4x the probabili-

ties of the outcomes (+ 1
2
,+ 1

2
), (+ 1

2
,− 1

2
), (− 1

2
,+ 1

2
), (− 1

2
,− 1

2
)

of this couple of RVs, it can be shown (one may use the general

results about RVs provided in [14]) that these RVs are statistically

independent if and only if (24) is met.

By combining (24) and (20)-(23), one can express condition (24)

as

ℜ[(c21 + c
2
4 − c

2
2 − c

2
3)(c1c4 − c2c3)

∗] = 0 (25)

where ℜ[.] and ∗ respectively stand for real part and conjugation.

The separation conditions that we set are expressed as (19) and

(25) for any state defined by (11). We now apply them to a spe-

cific class of states, namely the states that may be taken by the out-

put of our separating system. To this end, the expressions of the

components c1 to c4 of that output state |Φ〉 are first derived from

the expression (12) of C defined by (13), (14), (9), (15) and by the

expression of C+(t) derived from previous equations in this paper.

The resulting expressions of c1 to c4 are complicated and therefore

skipped here, due to space limitations.

These expressions are first applied to separation condition (19).

Assuming that c1 to c4 are non-zero, tedious calculations show that

(19) yields two solutions for γ1 to γ4. The first one is suitable, since

the resulting condition on γ1 to γ4 does not depend on the considered

source state. This condition reads

δ3 − δ2 = mπ (26)

wherem is an arbitrary integer and

δ2 = γ2 − ω1,0(t− t0) (27)

δ3 = γ3 − ω0,0(t− t0). (28)

4These measurements are performed for other instances of the same states
|Φ〉 than measurements along Oz axis, since sz and sx do not commute and
hence cannot be both measured for the same arbitrary state instance.
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The second solution is a spurious one, as the resulting condition on

γ1 to γ4 depends on the considered source state. It need not be de-

tailed here, as it may be avoided (e.g. using the cost function Fz

proposed below in Section 5), by requesting separation condition

(19) to be met for at least two source states which do not all yield the

same spurious solution (the corresponding condition for these source

states is provided in [14]).

Additional calculations then show that the output of our separat-

ing system corresponding to the above first solution is defined by

c1 = α1α2e
iδ1 (29)

c2 = α1β2e
iδ2 ifm even (30)

c2 = β1α2e
iδ2 ifm odd (31)

c3 = β1α2e
iδ2 ifm even (32)

c3 = α1β2e
iδ2 ifm odd (33)

c4 = β1β2e
iδ4 (34)

with

δ1 = γ1 − ω1,1(t− t0) (35)

δ4 = γ4 − ω1,−1(t− t0). (36)

We then derive in which case the above state meets (25). To this end,

we insert (29)-(34) into (25), which thus becomes, whateverm

ℜ[(α2
1α

2
2e

i2δ1 + β
2
1β

2
2e

i2δ4 − α
2
1β

2
2e

i2δ2 − β
2
1α

2
2e

i2δ2)

×(α1α2β1β2)
∗(ei(δ1+δ4) − e

i2δ2)∗] = 0.

(37)

We constrain our separating system to meet this condition for sev-

eral source states, indexed by n with n ∈ {1, . . . , Nx} andNx ≥ 2.
These states are defined by the values of the corresponding param-

eters α1(n), β1(n), α2(n), β2(n). Inserting these parameters into

(37) yields a set of Nx equations. The solutions of these equations

are determined by introducing the following property, which may

be proved by considering the polar representation of the considered

complex numbers.

Property 1. Let d be a non-zero complex number. Let d(n),
with n ∈ {1, . . . , N} and N ≥ 2, be a set of non-zero complex

numbers such that

ℜ[d(n)d∗] = 0 ∀n ∈ {1, . . . , N}. (38)

Then the phases of the complex numbers d(n) are all equal, up to

multiples of π.

We apply this property to (37) by selecting

d(n) = [α2
1(n)α2

2(n)ei2δ1 + β
2
1(n)β2

2(n)ei2δ4 − α
2
1(n)β2

2(n)ei2δ2

−β2
1(n)α2

2(n)ei2δ2 ][α1(n)α2(n)β1(n)β2(n)]∗ (39)

d = e
i(δ1+δ4) − e

i2δ2 (40)

and by considering the case when (38) is met with N = Nx ≥ 2,
the complex numbers d(n) are non-zero and do not all have the same

phase up to multiples of π. Then, Property 1 guarantees that d = 0,
i.e.

δ1 + δ4 = 2δ2 + 2πk (41)

where k is an integer. Inserting (41) into (29)-(34) then makes it pos-

sible to express the components of the output state of our separating

system only with respect to δ1 and δ4. This state is defined by (11).

Denoting

δ5 =
δ4 − δ1

2
− πk, (42)

additional manipulations then show that this state may be be ex-

pressed as follows ifm is even:

|Φ〉 = e
iδ1

“

α1|+〉 + β1e
iδ5 |−〉

”

⊗
“

α2|+〉 + β2e
iδ5 |−〉

”

(43)

whereas, ifm is odd

|Φ〉 = e
iδ1

“

α2|+〉 + β2e
iδ5 |−〉

”

⊗
“

α1|+〉 + β1e
iδ5 |−〉

”

. (44)

The proposed separation principle thus guarantees that, for the re-

sulting values of γ1 to γ4, the output state |Φ〉 obtained for any

non-entangled source state (5) is a tensor product, i.e. is also non-

entangled. Moreover, the factors of this tensor product (43) or (44)

are respectively equal to each of the source qubit states (1), possibly

up to a permutation and a phase eiδ5 for one qubit state component

with respect to the other (the phase eiδ1 should be ignored, since it

applies to all qubit state components and therefore has no physical

consequence). Output permutations and scale factors are also very

common in classical BSS, where they are called “indeterminacies”.

5. SEPARATION CRITERION AND ALGORITHM

A practical blind adaptation procedure may e.g. be derived as fol-

lows from the above separation principle. The first step of this proce-

dure uses a set of source states indexed by n with n ∈ {1, . . . , Nz}
and Nz ≥ 2. The corresponding probabilities (16) are denoted as

P1z(n) to P4z(n) and estimates of them are used in practice. This

step of the procedure aims at ensuring (26). Due to (27)-(28), this

is achieved by adapting one of the parameters γ2 and γ3, while the

other one, as well as γ1 and γ4, are constant. The separation criterion

used in this adaptation consists in looking for the global minimum

of the cost function

Fz =

Nz
X

n=1

|P1z(n)P4z(n) − P2z(n)P3z(n)|p (45)

e.g. with p = 1 or 2. This minimum is ideally equal to zero and

reached for the first solution of (19) but not for its spurious solution,

under the above-mentioned conditions. A simple algorithm derived

from the above criterion consists in performing a sweep on γ2 (or

γ3; besides, in practice, the sweep is performed e.g. on the voltage

which controls γ2 or γ3), computing the corresponding estimated

values of Fz and keeping the value of γ2 which minimizes Fz . One

then freezes γ2 (and γ3).

Similarly, the second step of our procedure consists of a sweep

on γ1 or γ4, which aims at minimizing the cost function

Fx =

Nx
X

n=1

|P1x(n)P4x(n) − P2x(n)P3x(n)|p (46)

in order to ensure (41).

6. CONCLUSION

In this paper, we explored the separation of coupled qubits by quan-

tum processing means (in the feedforward path). We derived the

first separation principle which ensures that the output qubit states of

our separating system are disentangled and restore the source qubit

states up to limited indeterminacies. This separation principle opens

the way to a variety of separation criteria and algorithms. We here

started to describe them and we will report on more advanced ver-

sions in future, longer, papers. We also plan to analyze their numeri-

cal performance by developing a software emulation of Heisenberg-

coupled qubits.
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