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ABSTRACT

Estimating likelihood or entropy rate is one of the key is-
sues in many signal processing problems. Mutual infor-
mation rate, which leads to the minimization of entropy
rate, provides a natural cost for achieving blind source
separation (BSS). In many complex-valued BSS applica-
tions, the latent sources are non-Gaussian, noncircular,
and possess sample dependence. Consequently, an ef-
fective estimator of entropy rate that jointly considers all
three properities of the sources is required. In this paper,
we propose such an entropy rate estimator that assumes
the sources are generated by invertible filters. With this
new entropy rate estimator, we propose a complex en-
tropy rate bound minimization algorithm. Simulation re-
sults show that the new method exploits all three proper-
ties effectively.

Index Terms— Independent component analysis,
Mutual information rate, Entropy rate.

1. INTRODUCTION

Independent component analysis (ICA) has been one of
the most attractive solutions for the BSS problem be-
cause of its widely applicable assumption on indepen-
dence. ICA can estimate a demixing matrix and separate
signals under the assumption of statistical independence
among the source signals. Furthermore, complex-valued
ICA (CICA) is widely used in a number of applications
such as communications, radar, and biomedicine [1–3].

In general, a CICA can be achieved by exploiting
the following three types of diversity—signal property:
non-Gaussianity (higher-order statistics), sample depen-
dency, or noncircularity [2, 4–6]. But, to the best of our
knowledge, all of the existing CICA algorithms exploit
only one or two of the diversities, and most of them
ignore sample dependence. The strongly uncorrelating
transform (SUT) [7, 8] and the generalized uncorrelating
transform (GUT) [9] algorithms only make use of noncir-
cularity by only using second-order statistics. The joint
approximate diagonalization of eigenmatrices (JADE)
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[10], complex FastICA [11], and algorithms using non-
linear functions [12, 13] only exploit non-Gaussianity by
assuming source is circular explicitly or implicitly. Non-
circular FastICA [14], the complex fixed-point algorithm
(CFPA) [15], kurtosis maximization (KM) [16], entropy
bound minimization (CEBM) [17], and algorithms using
nonlinear functions [18–21] take both non-Gaussianity
and noncircularity into account. The Gaussian entropy
rate minimization algorithm [22] separates noncircular
correlated sources by exploiting non-Gaussianity and
sample dependence.

In this paper, we present a new algorithm that takes
all three types of diversity into account. By assuming
each source is generated by an invertible filter driven
by an independently and identically distributed (i.i.d.)
random process, we propose an entropy rate estimator.
Then, we use the mutual information rate to derive an
algorithm, CICA by entropy rate bound minimization
(CERBM), that exploits all three types of diversity. In-
stead of minimizing entropy rate, which is equivalent to
the minimization of mutual information rate, we mini-
mize a bound on the entropy rate using a semi-parametric
method. By estimating an upper bound, we achieve an
algorithm which is robust to model mismatch. We show
that CERBM makes use of all three types of diversity
and provides very desirable performance by comparing
its performance with those of competing algorithms.

2. BACKGROUND

2.1. Preliminaries

We assume that a complex random vector x = xR +
jxI ∈ CT has zero mean, where j =

√
−1 is the imagi-

nary unit. Let x = [x!,xH]! be the complex augmented
vector, where superscript $ and H denote the transpose
and Hermitian, respectively. The second-order statistics
are given by the following augmented covariance matrix

R ! E
{
x xH

}
=

[
R R̃
R̃∗ R∗

]
,

where E denotes expectation, superscript ∗ denotes com-
plex conjugate, and R ! E

{
xxH

}
and R̃ ! E

{
xx!}
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are called the covariance and pseudo-covariance (or com-
plementary covariance) matrix, respectively.

The probability density function (PDF) and entropy
rate of x are defined as p(x) ! p(xR,xI) and Hr(x) !
Hr(xR,xI) = limT→∞ E {− log p(xR,xI)} /T , re-
spectively. The random vector x is called second-order
circular or proper if pseudo-covariance matrix R̃ = 0
and strictly circular, or circular, if x and xejθ have the
same PDF for any θ ∈ R [1].

2.2. ICA model and cost function

Let N statistically independent zero-mean sources s(t) =
[s1(t), . . . , sN (t)]! ∈ CN be mixed through an N × N
nonsingular mixing matrix A ∈ CN×N so that we obtain
the mixtures x(t) = [x1(t), . . . , xN (t)]!.

x(t) = As(t), 1 ≤ t ≤ T,

where t is the discrete sample index. The mixtures are
separated as y(t) = Wx(t), where W ! [w1, . . . ,wN ]H

is the demixing matrix, which is the quantity to be es-
timated for ICA, and y(t) ! [y1(t), . . . , yN (t)]!. This
can also be written in matrix form, Y = WX = WAS,
where S ! [s1, . . . , sN ]! ∈ CN×T , and si ∈ CT . The
same definition holds for x and y.

A natural cost for achieving the separation of these
independent sources is the mutual information rate
Ir(y1; . . . ; yN ) =

∑N
i=1 Hr(yi) − log det(WWH) −

Hr(x) among random processes yi, i = 1, . . . , N , where
Hr(yi) is the entropy rate of the ith process yi, and the
entropy rate of the vector process x, Hr(x), is a constant
with respect to W. Hence, the cost function is given by:

Jr(y1; . . . ; yN ) =
N∑

i=1

Hr(yi)− 2 log | det(W)|, (1)

since det(WWH) = | det(W)|2. Mutual informa-
tion rate cost includes all three types of diversity, since
entropy rate is defined by the joint PDF of the whole
complex random process. If the samples are i.i.d.,
this cost function will reduce to mutual information
I(y1; . . . ; yN ), and, as noted in [4, 18, 23], the mutual
information rate cost function is intimately related with
the maximum likelihood and non-Gaussianity cost.

3. COMPLEX ENTROPY RATE ESTIMATOR

For the estimation of entropy rate, we assume that there
exists a whitening filter, i.e., there exists a b such that

z(t) = bHy
(K+1)

(t) = pHy(K+1)(t) + qHy∗
(K+1)(t),

where p = [p0, . . . , pK ]! ∈ CK+1, q = [q0, . . . , qK ]! ∈
CK+1, b = [p!,q!]!, y(K+1)(t) = [y(t), . . . , y(t −
K)]!, and y

(K+1)
(t) = [y!

(K+1)(t),y
H
(K+1)(t)]

!. The

output process z will then be an i.i.d. process. We can
always scale the whitening filter b such that the input and
output will have equal entropy, which means the entropy
rate of y equals the entropy of z since z is i.i.d.. The
optimum filter coefficients b can be obtained by solving
the following optimization problem:

min
b

H(z), s.t.
∣∣|p0|2 − |q0|2

∣∣ = 1, (2)

where the constraint
∣∣|p0|2 − |q0|2

∣∣ = 1 makes sure that
the input and output will have equal entropy [22]. Esti-
mation of the entropy of a complex random variable re-
quires estimation of a bivariate distribution which is more
complicated than the univariate real-valued case. Thus,
we estimate an entropy bound H(z) ≤ H(zR) +H(zI)
instead, where the equality holds if and only if the real
and imaginary part of z are independently distributed.

For the estimation of entropy of a real-valued ran-
dom variable, we use a suite of maximum entropy dis-
tributions to form a flexible model and can approximate
the entropies of a wide range of distributions, including
sub-Gaussian, super-Gaussian, unimodal, bimodal, sym-
metric and skewed distributions [24]. The entropy bound
of a real-valued random variable n with unit variance is
given by H(n) = 0.5 log(2πe) − V (E {G(n)}), where
G(·) is a measuring function for a maximum entropy dis-
tribution, and V (·) is the negentropy defined in [24].

Hence, the cost function H(z) in (2) can be derived
using

H(z)≤ log(σzRσzI ) +H(z̄R) +H(z̄I), (3)

where z̄R = zR/σzR , z̄I = zI/σzI , and σzR and σzI
are standard deviation of zR and zI , respectively. The
problem can then be written as the following Lagrangian
function

Lb(b,λ)= log(2πeσzRσzI )− V1 (E {G1(z̄R)})
−V2 (E {G2(z̄I)}) + λ

(
bHDbb− 1

)
,(4)

where

Db = diag



1, 0, . . . , 0︸ ︷︷ ︸
K

,−1, 0, . . . , 0︸ ︷︷ ︸
K



 .

For updating, we use Wirtinger calculus [1, 25] to com-
pute the gradient of the Lagrangian function (4) with re-
spect to b. The details of the derivations are given in
Appendix A. Hence, the entropy rate of y, Hr(y), is
bounded by H(zR) +H(zI).

In [17], the bound H(u) + H(v) is used for H(z),
where uncorrelated random variables u and v are linearly
transformed from zR and zI . In our case, the whiten-
ing filter b makes the samples of z to be i.i.d., and also
makes zR and zI as independent as possible, since we
use H(zR) + H(zI) as our cost function. Also, it can
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be shown that a widely linear filter followed by a linear
transformation is always equivalent to another widely
linear filter (proof omitted due to space constraints).
Hence, theoretically, we may achieve a tighter entropy
bound by using the widely linear whitening filter output
zR and zI , rather than u and v.

4. CERBM ALGORITHM

Using mutual information rate cost function (1), we
propose an algorithm that exploits all three types of di-
versity: non-Guassianity, sample dependency, and non-
circularity. Using the new entropy rate estimator (3), the
entropy rate Hr(yi) is estimated by H(zi). Filter coeffi-
cients for different whitening filters can be different, but
filter orders are assumed to be the same for simplicity.

Instead of minimizing Jr(W) with respect to the
demixing matrix W, we use a decoupling procedure
[26, 27] to divide the problem into minimizing Jr(W)
with respect to each of the row vectors wi, i = 1, . . . , N .
We can then write the cost as a function of only wi,
which is

Ji(wi)=H(zi)− 2 log |hH
i wi|+ Ci

≤ log(2πe) + log σzR + log σzI − 2 log |hH
i wi|

−V1 (E {G1(z̄R)})− V2 (E {G2(z̄I)}) + Ci,

where hi is a unit Euclidian length vector that is perpen-
dicular to all the row vectors of W except wi, and Ci is
a constant term with respect to wi.

The gradient update rule is given by

∂Ji(wi)

∂w∗
i

=
1

2σ2
ziR

∂σ2
ziR

∂w∗ +
1

2σ2
ziI

∂σ2
ziI

∂w∗ − hi

wH
i hi

−vi1 (E {Gi1(z̄iR)})E
{
gi1(z̄iR)

∂z̄iR
∂w∗

i

}

−vi2 (E {Gi2(z̄iI)})E
{
gi2(z̄iI)

∂z̄iI
∂w∗

i

}
.

The details of the derivations are given in Appendix B.
Since the update of the whitening filter contributes

most to the CPU time, we also provide a computationally
light version, complex entropy rate bound minimization-
light (CERBM-L), by using the closed form approxima-
tion of b. By assuming y is Gaussian distributed, the
optimal b is given by the eigenvector of R−1

y
(K+1)

Db,

where Ry
(K+1)

= E
{
y
(K+1)

yH
(K+1)

}
, associated with

the maximum eigenvalue.

5. EXPERIMENTAL RESULTS

In this section, we study the performances of proposed
algorithms, CERBM and CERBM-L, in terms of the nor-
malized interference to source ratio (ISR), which is given

by (1/N(N−1))
∑N

{i,j=1,i '=j} E
{
g2ij

}
, where gij is the

ijth entry of the global demixing matrix G = WA. All
results are the average of 100 trials.

5.1. Performance of the new entropy rate estimator
exploiting all three types of diversity

In order to show that the new method exploits all three
types of diversity, we show the performance of the new
entropy rate estimator using data that is generated by
s(t) = as(t − 1) + z(t), where a controls the sample
dependence, and z is an i.i.d. complex generalized Gaus-
sian distributed (CGGD) process [28] with shape param-
eter β. The CGGD comprises a number of symmetric
and unimodal distributions, from super-Gaussian (0 <
β < 1), Gaussian (β = 1), to sub-Gaussian (β > 1). The
non-Gaussianity and noncircularity of z are controled by
the shape parameter β and ρ = E

{
z2
}

, respectively.
The entropy rate of s equals to the entropy of z, since the
coefficients of s(t) and z(t) are equal in the generative
model, and z is an i.i.d. process. The entropy of a CGGD
random variable is given in [29], since a CGGD random
variable can be considered as a bivariate GGD vector.

As observed in Fig.1, entropy rate Hr decreases with
increasing non-Gaussianity, i.e., when the GGD shape
parameter β moves away from one, increasing diversity
in terms of sample dependence, i.e., as the AR coefficient
a increases, and/or increasing diversity in terms of non-
circularity, i.e., as the coefficient ρ increases. Further-
more, we observe that the new entropy rate estimator,
Ĥr, accounts for all three types of diversity effectively
in terms of approaching the true entropy rate Hr. The
entropy estimator, Ĥ , provides better estimation when
there is no sample dependence, since it assumes that data
is i.i.d. CGGD, which matches to the data exactly. How-
ever, it ignores sample dependence and thus its perfor-
mance is degraded relative to Ĥr when samples are de-
pendent.

5.2. CERBM performance for communications sig-
nal

In order to show the effectiveness of CERBM for a richer
class of sources, their performances are compared with
some widely used complex BSS algorithms in the sepa-
ration of artificial mixtures of quadrature amplitude mod-
ulation (QAM) data. In this experiment, we generate
sources by fourth-order moving-average (MA) models,
with random coefficients, driven by i.i.d. QAM sources
with order 2n for the nth source. We vary the number
of samples, and fix the number of sources and whitening
filter length to be 5 and 4, respectively. From Fig.2, we
observe that CERBM perform the best among those algo-
rithms in terms of percentage of failures and normalized
ISR. But CERBM is the most time consuming one due to
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Fig. 1: Performances of entropy rate estimator in terms
of three types of diversity. Source is generated by first
order AR model driven by an i.i.d. CGGD process. The
true entropy rate, entropy rate estimated by the new es-
timator, and entropy estimated by assuming samples are
i.i.d. CGGD are given by Hr, Ĥr, and Ĥ , respectively.
Note how the true entropy rate, Hr, changes by varying
the three types of diversity, and the entropy rate estima-
tor, Ĥr, exploits all three.

the updating of whitening filter coefficients. CERBM-L
is faster than CERBM, since it uses a closed form ap-
proximation for the whitening filter coefficients.
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Fig. 2: Three performance measures as function of sam-
ples size. Five sources are generated by fourth order MA
model driven by i.i.d. QAM processes.

6. CONCLUSION

We propose an effective entropy rate estimator for
complex-valued random process by using a flexible

density matching method and assuming that sources
can be whitened by widely linear filters. Based on the
new entropy rate estimator, we introduce a new CICA
algorithm, CERBM, that makes use of all three types
of diversity: non-Gaussianity, sample dependency, and
noncircularity. Simulation results show that the new en-
tropy rate estimator accounts for three types of diversity
and the effectiveness of CERBM. Other than these three
types of diversity, it would be also interesting to consider
nonstationarity as an additional property.

A. GRADIENT UPDATE RULE FOR
WHITENING FILTER

Let R(K+1) = E
{
y
(K+1)

yH
(K+1)

}
and R̃(K+1) =

E
{
y
(K+1)

y!
(K+1)

}
.

∂ log σzR

∂b∗ =
1

4σ2
zR

(
R̃(K+1)b

∗ +R(K+1)b
)

∂ log σzI

∂b∗ =
−1

4σ2
zI

(
R̃(K+1)b

∗ −R(K+1)b
)

∂V1 {E {G1(z̄R)}}
∂b∗ = v1 {E {G1(z̄R)}}

(E
{
g1(z̄R)y(K+1)

}

2σzR

−E {g1(z̄R)z̄R}
4σ2

zR

R̃(K+1)b
∗ − E {g1(z̄R)z̄R}

4σ2
zR

R(K+1)b

)

∂V2 {E {G2(z̄I)}}
∂b∗ = v2 {E {G2(z̄I)}}

(E
{
g2(z̄I)y(K+1)

}

2jσzI

+
E {g2(z̄I)z̄I}

4σ2
zI

R̃(K+1)b
∗ − E {g2(z̄I)z̄I}

4σ2
zI

R(K+1)b

)
,

where v1 and v2 are the derivatives of V1 and V2, respec-
tively, and g1 and g2 are the derivatives of G1 and G2,
respectively.

B. GRADIENT UPDATE RULE FOR CERBM

∂ziR
∂w∗

i

=
1

2

(
X(K+1)p

∗
i +X(K+1)qi

)

∂ziI
∂w∗

i

=
1

2j

(
X(K+1)p

∗
i −X(K+1)qi

)

∂σ2
R

∂w∗ =
1

2

(
E
{
zX(K+1)

}
+ E

{
z∗X(K+1)

})
(p∗ + q)

∂σ2
I

∂w∗ =
−1

2

(
E
{
zX(K+1)

}
− E

{
z∗X(K+1)

})
(q∗ − q)
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