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ABSTRACT

Signals in various applications are often generated by linear com-
binations of quantized components. The analysis of data into such
components is treated here as a matrix analysis problem. We first
show that the component alphabet can always be normalized to the
levels 0, ...,M−1, without loss of generality. Then we study certain
conditions under which the decomposition is possible. In particular,
we present an analytical algorithm based on the differences of the
observed points and the recursive estimation of the quantized com-
ponents when the number of unique observed points is sufficiently
large.

Index Terms— matrix factorization, data analysis, quantized
components, blind source separation

1. INTRODUCTION

In various applications the data that are observed or collected can be
described as linear combinations of components whose samples take
values from a finite alphabet. For example, in digital communica-
tions, various popular modulation schemes such as PAM, BPSK, or
QAM, generate quantized sources which are commonly observed at
the receiver mixed with other sources or mixed with delayed copies
of themselves due to multipath [1]. Also in social or economic anal-
ysis, observed quantities or statistical measurements depend on dis-
crete variables. Oftentimes these variables are binary (e.g. gender,
ownership of a car, etc) but multi-level variables are also common
(number of children, education level, number of accident per month,
e.a.) [2]. In such cases, the analysis of the observed data should
be constrained to produce quantized (discrete) components. Tradi-
tional component methods such as PCA or ICA are not immediately
applicable for this task.

1.1. Relation to prior work

The analysis of signals into components is a very old idea dating
back to the pioneering work of Pearson [3] who studied the optimal
fit of linear hyperplanes to the data. His approach turned out to be
equivalent to the analysis of signals into uncorrelated components,
later known as Principal Component Analysis (PCA) [4], a name
coined by Hotelling in 1933 [5]. PCA is a cornerstone method for
statistical analysis which has found numerous applications in a large
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number of fields such as data compression, image processing, face
recognition, economic data analysis, etc. Recent decades saw the de-
velopment of many alternative approaches to data analysis based on
different assumptions. In Independent Component Analysis (ICA)
[6, 7] the data are represented by linear or non-linear combinations
of components that are assumed to be mutually statistically indepen-
dent. Non-negative matrix factorization [8] is another popular data
decomposition method where the factors of the data matrix are con-
strained to be non-negative. In sparse signal decomposition (also
known as sparse representation or compressive sensing) [9, 10] the
data are represented by a limited number of non-zero components by
minimizing their l0 or l1 norm.

More recently, a number of approaches have proposed the sta-
tistical analysis of data into discrete components with applications
mainly on document analysis and socioeconomical sciences. Such
approaches include the Latent Dirichlet Allocation [11], Probabilis-
tic Latent Semantic Indexing [12], Gamma-Poisson models [13],
multinomial PCA [14]. These methods have been unified under
the statistical perspective of the so called Discrete Principal Com-
ponent Analysis [15]. Also, in [16, 17] Gutch e.a. have approached
the problem of independent component analysis over finite fields us-
ing a probabilistic framework. The Blind Separation of multi-level
sources [18] is another statistical approach for obtaining signal com-
ponents that take values from a discrete alphabet. This last work
viewed the problem from a statistical perspective and can be seen as
the precursor to the present work.

In this paper we approach the problem of data analysis into
quantized components from a matrix factorization point of view. We
make no particular assumptions regarding the probability distribu-
tion of the input nor of the distribution of the basis (mixing) vectors.
In that sense, our approach is more similar to the Non-negative ma-
trix factorization problem.

2. PROBLEM FORMULATION

Consider a real, discrete time signal x(k) ∈ Rm which is gener-
ated by a shifted linear combination of n real, quantized components
s̄i(k) ∈ ĀM , i = 1, · · · , n:

x(k) =

n∑
i=1

cis̄i(k) + b̄ (1)

for some c1, ..., cn, b̄, where ĀM = {ᾱ0, · · · , ᾱM−1} is the alpha-
bet consisting of M discrete symbols (also called levels). Without
loss of generality we assume that the levels are arranged in increas-
ing order and the distance between consecutive levels is equal to 1,
thus: ᾱp = ᾱ0+p, p = 0, · · · ,M−1. Subtracting the fixed offset
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ᾱ0 from the input symbols we obtain the new discrete components

si(k) = s̄i(k)− ᾱ0

which take values from the “normal” alphabet

AM = {0, · · · ,M − 1}

and (1) becomes

x(k) =

n∑
i=1

cisi(k) + b (2)

with b = b̄ + ᾱ0

∑n
i=1 ci. Given a specific set of data for k =

1, · · · ,K, we can rewrite (1) in matrix form as

X =
[
C b

] [ S
uT
K

]
(3)

where uK is a K-dim vector of all 1’s. Therefore, the signal de-
composition (1) from any generic alphabet ĀM is equivalent to the
signal decomposition (2) from the normalized alphabet AM .

Our goal is to solve the following problem:

Quantized Matrix Factorization: Given a matrix X ∈ Rm×K

generated by Eq. (3) find C ∈ Rm×n, b ∈ Rm and
S ∈ Rn×K with sij ∈ AM , assuming that we know the
number of symbols M and the number of components n.

Clearly for any permutation matrix P ∈ Rn×n we have C′S′ = CS
with C′ = CPT , S′ = PS. Therefore, the components can be re-
covered only upto an arbitrary permutation. The familiar scaling am-
biguity present in ICA is absent here because we assume knowledge
of AM , ie. we know the range of the inputs.

The most general problem formulation includes the presence of
measurement error e, so that Eq. (1) becomes

x(k) =

n∑
i=1

cis̄i(k) + b̄ + e(k). (4)

However, we shall not treat this problem here, postponing its discus-
sion for a future work. In the sequel we shall assume that the error
component is zero.

3. ANALYSIS

Definition 1 Define col(Z) to be the set of columns of the matrix Z.

Definition 2 (Difference matrix) For any matrix Z ∈ Rh×w we
define the Difference Matrix DZ ∈ Rh×w(w−1) as the matrix con-
sisting of the differences (zp−zq) for all pairs zp, zq ∈ col(Z) with
p 6= q.

Let A ∈ Rn×Mn

denote the matrix whose columns are all the
elements ofAn

M appearing exactly once (i.e. contains all n-tuples of
symbols taken from the alphabet AM ):

A=



0 0 · · · 0 1 · · · 1 · · · M − 1
0 1 · · · M − 1 0 · · · M1 · · · M − 1
...

...
...

0 0 · · · M − 1 0 · · · M − 1 · · · M − 1


(5)

Clearly col(S) ⊆ col(A). The difference matrix DA has
Mn(Mn − 1) columns with many repetitions. We can show the
following:

Theorem 1 Each one of the vectors e1 = [1, 0, · · · , 0]T , −e1,
e2 = [0, 1, · · · , 0]T , −e2, ..., en = [0, 0, · · · , 1]T , −en, appear
exactly (M − 1)Mn−1 times in the matrix DA. Moreover, these are
the most frequently repeated columns in DA.

PROOF. For the first part of the theorem, we shall focus, without
loss of generality, on e1 as the proof for the other vectors is entirely
analogous. Let d = ap − aq = e1 for some ap,aq ∈ col(A)
and N(d) denote the number of combinations by which we can
achieve a − b = d with a, b ∈ AM . We can achieve d1 = 1 in
N(1) = (M −1) different ways, namely d1 = 1−0 or 2−1, ..., or
(M−1)−(M−2). We also haveN(0) = M so the rest of the vec-
tor d2:n = ai,2:n − aj,2:n can be zero in N(0)n−1 = Mn−1 ways.
Let N(e1) denote the times the vector [1, 0, · · · , 0]T appears in
DA. Then N(e1) = N(1)N(0)n−1 = (M − 1)Mn−1. Similarly,
N(ei) = N(1)N(0)n−1 = (M − 1)Mn−1, for all i = 1, · · · , n.

For the second part of the theorem, consider any vector d =
ap − aq , p 6= q, such that d 6∈ {±e1, · · · ,±en}. It is not dif-
ficult to see that there always exists a vector ep, for some p ∈
{1, · · · , n}, such that |di| ≥ |ep,i| for all i = 1, · · · , n, and further-
more, |dj | > |ep,j | for at least one j ∈ {1, · · · , n}. From straight-
forward computations we find that N(d) < N(e) if |d| > |e| and
N(d) = N(−d) = N(|d|). So

N(d) =

n∏
i=1

N(|di|) <
n∏

i=1

N(|ep,i|) = N(ep).

Similarly to A we may define H = CA ∈ Rm×Mn

, so x ∈
col(X) ⇔ x = h + b, h ∈ col(H). Considering the difference
matrix DH we note that DH = CDA.

If for any pair dp,dq ∈ col(DA) we have

dp 6= dq ⇒ Cdp 6= Cdq (6)

then the next result follows directly from Theorem 1:

Corollary 1 If condition (6) holds, then each one of the vectors c1,
−c1, c2, −c2, ..., cn, −cn appear exactly (M − 1)Mn−1 times in
the matrix DH . Moreover, these are the most frequently repeated
vectors in DH .

PROOF. Condition (6) implies that there is a one-to-one correspon-
dence between the columns of DH and the columns of DA. There-
fore, each vector ±ci = ±Cei appears (M − 1)Mn−1 times in
DH while all other vectors appear less frequently.

Therefore, the most frequent columns of DH are the columns of
the “basis matrix” C together with their opposites in arbitrary order.

Note that we made no specific assumptions with respect to the
dimension, m, of the observed signal x or the number of compo-
nents, n. In general, m can be less than, equal to, or greater than
n.

Let U be the m × L matrix formed by the unique columns of
X, so X = UT with T ∈ RL×K being the appropriate expansion
matrix (tij ∈ {0, 1} and

∑L
i=1 tij = 1).

For given M and n, two extreme cases can be easily identified
regarding the existence and uniqueness of the decomposition

• if L > Mn then the matrix X admits no quantized factoriza-
tion since the unique columns are more than the size of the
input alphabet |An

M |;
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• if L ≤ n then X admits many decompositions. For instance,
we have X = CS for any matrix S ∈ Rn×K with sij ∈ AM

and rank(S) = n, and C = XS+, where S+ is the pseudo-
inverse of S.

The interesting case is for n < L ≤Mn. For L = Mn we have
the following result:

Theorem 2 (Case L = Mn) Consider the matrices X and U de-
fined above. For a given number of levels, M , and number of com-
ponents, n, if the following statements are true:

• L = Mn

• There exist n distinct, non-zero vectors c1, · · · , cn ∈ DU

such that each one of them and each one of their opposites
−c1 · · · , −cn are repeated (M − 1)Mn−1 times in DU .
Define

C = [c1, · · · , cn] (7)

• C satisfies condition (6)

• The sets Si
0 = {x ∈ col(U) | x − ci 6∈ col(U)}, Si

j =

{x ∈ col(U) | x − ci ∈ Si
j−1}, j = 1, · · · ,M − 1, have

cardinality Mn for all i = 1, · · · , n
then there exists a decomposition in the form of Eq. (3) with C de-
fined above and with S ∈ Rn×K , sij ∈ AM .

PROOF. For any given i ∈ {1, · · · , n}, the sets Si
j , j =

0, · · · ,M − 1, are disjoint. Since there are M such sets with
cardinality Mn−1 while the total number of columns of U is
L = Mn, it follows that each vector x ∈ col(U) must be a
member of exactly one of the sets Si

0, ..., Si
M−1, for each i. If

x ∈ S1
j1 , · · · , S

p
jp
, · · · , Sn

jn then the vector [j1, · · · , jp, · · · , jn]T

will be called the signature of x. For any x′ ∈ col(U) with sig-
nature [j1, · · · , jp ± 1, · · · , jn]T we have x′ = x ± cp. It easy
to show that for any x, x′ with signature vectors j, j′, we have
x′ = x +

∑n
i=1(j′i − ji)ci, or

x′ = x + C · (j′ − j) (8)

Also there are not two distinct x,x′ ∈ col(U) with the same
signature vector j. Otherwise, for each ` = [`1, · · · , `n]T ∈
{0, · · · ,M − 1}n we would have y = x + C(`− j) 6= x′+ C(`−
j) = y′. Then there would exist 2 ·Mn many distinct columns in
U, in contradiction to our assumption.

Let x0 the column with signature [0, · · · , 0]T . Then for the k-
th column x(k) ∈ col(U) with signature j(k) we have x(k) =
Cj(k) + x0. Defining the matrix J = [ j(1), · · · , j(Mn) ] we have

U =
[
C x0

] [ J
uT
L

]
with uL = [1, · · · , 1]T ∈ RL. Right-multiplying by T we obtain

X =
[
C x0

] [ S
uT
K

]
, (9)

S = JT. (10)

According the proof of theorem 2 the signature of a vector x
yields the component vector s corresponding to x. Based on the
assumptions of Theorem 2 we shall develop a practical and efficient
algorithm for quantization component analysis, taking advantage of

the recursive relationship described by Eq. (8). Starting from an
arbitrary point x with signature j, any point x′ for which x′ = x +
kci, will have signature equal to j′ = j + kei, where ei is the i-th
column of the n× n identity matrix.

Algorithm 1 (Quantized Component Extraction)

1. Identify the unique columns of X to form a matrix U, and
save the mapping T, from the columns of U to the columns
of X.

2. Construct the difference matrix DU by taking pairwise dif-
ferences of all columns of U. Take ±c1, ..., ±cn, to be the
vectors which appear (M−1)Mn−1 times in DU . Select the
signs arbitrarily.

3. Mark all columns of U as “not visited” and “not done”.

4. Select an arbitrary vector x ∈ col(U). Set its signature to
j = 0 and mark it as “visited” and “done”.

5. For all i = 1, · · · , n, find the vectors x′ ∈ col(U) for which
x′ = x+kci, for some k ∈ {−(M−1), · · · ,M−1} and set
their signatures equal to j′ = j + kei. Mark all such vectors
x′ as “done”.

6. While there are columns of U which are “not done”, select an
arbitrary x ∈ col(U) with signature j so that it is “done” but
“not visited”. Go to Step 5.

7. Let µi = minj{ji}, i = 1, · · · , n. For all signatures j set
ji ← ji − µi; Call x0 the vector with signature j = 0.

8. Construct C and S according to (7), (10).

Note that the the arbitrary starting point in step 4 is assigned
the signature j = 0 although its true signature might actually be
j0 = [j01 , · · · , j0n]T 6= 0. For this reason, the signatures obtained
after Step 6 are shifted by j0. Thus Step 7 is required to shift the
signatures back to the original range 0, · · · ,M − 1.

4. SIMULATION EXAMPLE

We have tested the Algorithm 1 using various test data. Here, for
the sake of visualization, we present an example where the observed
signal dimensionality ism = 2, the number of components is n = 3,
and the input alphabet is A3 = {0, 1, 2}, for M = 3. The basis
matrix is

C =

[
−0.1924 −0.7648 −1.4224
0.8886 −1.4023 0.4882

]
and the offset b = [0 0]T . Figure 1 shows the subsets Si

j corre-
sponding to the basis vectors ci and levels j = 0, 1, 2. The basis
vectors c1, c2, c3, are estimated by clustering the pairwise differ-
ences x−x′ for all x,x′ ∈ U. Figure 2 shows how the computation
of the signature spreads from a starting point x0 according to rule
(8). Then a random point among x1, x2, x3 is chosen to continue
the recursion, and so on. The recursion terminated in 27 iterations.
The final estimated basis matrix was a perfect estimation of C up to
a permutation of the columns:

Ĉ =

[
−0.7648 0.1924 −1.4224
−1.4023 −0.8886 0.4882

]
.

6254



c
1 c

1
c

1

S1
0 S1

1 S1
2

c
2

c
2

c
2

S2
0 S2

1 S2
2

c
3 c

3
c

3

S3
0 S3

1 S3
2

Fig. 1. The subsets Si
j for a case with m = 2, n = 3, M = 3 and A3 = {0, 1, 2}. Each subplot shows the constellation of the vectors

x ∈ col(X) and the points belonging to the corresponding subset Si
j are marked with circles. Each subset Si

j is a shifted version of the subset
Si
j−1 by ci.
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Fig. 2. Given the signature [j1, j2, j3] of vector x0 the signatures of
x1, x2, and x3 are [j1+1, j2, j3], [j1, j2+1, j3], and [j1, j2, j3+1],
respectively.

5. CONCLUSIONS

We have treated the decomposition of signals into n quantized com-
ponents as a matrix factorization problem. First it is shown that if the
input alphabet consists of M equally spaced levels then the problem
can be transformed, without loss of generality, into an equivalent
one with alphabet normalized between 0 and M − 1. Next, we show
that under certain conditions and provided that enough observation
samples are collected, the problem admits a solution unique up to
permutation. For this case, we propose a deterministic iterative algo-
rithm which estimates the basis (mixing) vectors from the pairwise
differences of the unique observations and then proceeds to perfectly
reconstruct the components in a recursive fashion.
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