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ABSTRACT

Model-based speech enhancement methods, which rely on sepa-
rately modeling the speech and the noise, have been shown to be
powerful in many different problem settings. When the structure of
the noise can be arbitrary, which is often the case in practice, model-
based methods have to focus on developing good speech models,
whose quality will be key to their performance. In this study, we
propose a novel probabilistic model for speech enhancement which
precisely models the speech by taking into account the underlying
speech production process as well as its dynamics. The proposed
model follows a source-filter approach where the excitation and
filter parts are modeled as non-negative dynamical systems. We
present convergence-guaranteed update rules for each latent factor.
In order to assess performance, we evaluate our model on a challeng-
ing speech enhancement task where the speech is observed under
non-stationary noises recorded in a car. We show that our model
outperforms state-of-the-art methods in terms of objective measures.

Index Terms— source-filter model, non-negative dynamical
system, non-negative matrix factorization, speech enhancement,
source separation

1. INTRODUCTION

Speech enhancement methods attempt to improve the quality and
intelligibility of speech that has been degraded by interfering noise
or other processes. The aim is generally to recover the clean speech
signal from a noisy mixture, where the mixture is assumed to be the
sum of the speech signal and a noise signal.

Model-based speech enhancement methods aim to express the
speech and the noise spectra using statistical models. For situations
where the noise is stationary or slowly varying, relatively simple
models of both speech and noise can be very effective [1,2]. In more
general settings, where the structure of the noise is unpredictable, the
quality of the speech model plays a key role in speech enhancement
performance. In this case, a semi-supervised approach can be taken,
where the speech model is estimated on speech training data and the
noise model is estimated during the enhancement process.

Model-based speech enhancement methods differ in terms of the
basic modeling distributions and strategy, the feature domain used
for modeling, and the extent to which structure such as temporal
dynamics and speech production properties are modeled.

In terms of modeling strategy, two broad approaches exist: one
based on discrete state modeling such as Gaussian mixture models
(GMMs) and hidden Markov models (HMMs) versus methods us-
ing continuously-weighted combinations of basis functions, such as
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non-negative matrix factorizations (NMF) [3] and their extensions.
The general trade-off is that discrete-state approaches [4, 5] can be
more precise, especially in their temporal dynamics, whereas con-
tinuous approaches [6, 7] can be more flexible with respect to gain
and subspace variability.

Feature domains such as the complex spectrum, power spec-
trum, and log power spectrum have been used for speech enhance-
ment. Each domain introduces a trade-off between the ease of mod-
eling the signals, and that of modeling the interaction between sig-
nals that are mixed together [8]. In feature domains where the inter-
action between speech and noise is additive, isolating the phonetic
content of the speech signal can be difficult. This is because phonetic
content is imparted to speech by the filtering effect of the vocal tract,
which is approximately multiplicative in the power spectrum. In the
log spectrum domain the vocal tract filter is additive, but the effect
of noise is nonlinear, and compensating for it becomes difficult.

Many systems based on single-frame modeling of the speech
spectrum have been investigated, including log spectrum GMMs [9],
or other spectral mixture models [10], as well as power-spectrum do-
main NMF models. Such models tend to be susceptible to transients
and in general could benefit from the known dynamical structure
present in speech signals: the evolution of phonetic and pitch pro-
cesses are governed by linguistic constraints as well as constraints
on speech production. Models have been proposed that incorporate
such structure, such as temporal dynamics and source-filter model-
ing. Discrete state models, such as HMMs, represent dynamics using
discrete state transitions over time [4, 11]. Continuous state Gaus-
sian dynamical models, such as linear dynamical systems (LDSs),
have long been studied [12], and recently rich models of continu-
ous dynamics have been extended to the NMF family using gamma-
distributed models [6,7] in models known as non-negative dynamical
systems (NDSs). There have also been combinations with discrete
dynamics and NMF observation models [13].

Knowledge of speech production mechanisms can also be ex-
ploited to impose powerful modeling constraints. Source-filter mod-
els represent the excitation source and the filtering of the vocal tract
as separate factors [14]: the source corresponds to the excitation part
of the signal which is mainly composed of vocal cord vibrations
(voicing) having a particular pitch, turbulent air noise (fricatives),
and air flow onset/offset sounds (stops), and their combinations. The
filter corresponds to the influence of the vocal tract on the spectral
envelope of the sound, as in the case of different vowels (‘ah’ versus
‘ee’) or differently modulated fricative modes (‘s’ versus ‘sh’). Such
a factorial strategy has been proposed in various domains [15–20].
In [5], factorial HMMs were used to model both the source and filter
dynamics for speech separation, but otherwise there has been little
work modeling dynamics of both factors.

We investigate a novel probabilistic model for speech enhance-
ment that draws from many of the above approaches. The aim is
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Fig. 1. Illustration of the proposed model. The power spectrum S is
decomposed as a product of a filter part Vr , an excitation part Ve,
and gains g. The smooth overlapping filter dictionary Wr implicitly
restricts Vr to capture the smooth envelope of the spectrum. We

captures the spectral shapes of the excitation modes. Ŝ is the model
prediction: ŝfn = gnv

r
fnv

e
fn.

to model the speech precisely by taking into account the underly-
ing speech production process as well as its dynamics. The pro-
posed model follows a source-filter approach where the excitation
and filter parts are modeled as a dynamical system. The state is fac-
torized into discrete components for the filter (i.e., phoneme) states
and the excitation states, and a continuous state for the overall gain.
Each of these is modeled as a Markov chain, leading to a hybrid be-
tween a factorial HMM and the non-negative dynamical system ap-
proach. Whereas the excitation states directly select excitation tem-
plates similarly to [20], the filter observation model follows that of
hierarchical NDS (HNDS) model [7] to allow for richer variations.

We evaluate our model on a challenging speech enhancement
task where the speech is observed under non-stationary car noises.
We show that our model outperforms the state-of-the-art methods in
terms of objective measures, and that the dynamics and the hierar-
chical filter model each contribute to better performance.

The rest of the paper makes use of the following notation: bold
capital letters denote matrices (e.g., A), aj denotes the j th column of
A, and aij denotes a single entry of A. Similarly, bold small letters
denote vectors (e.g., a) and ai denotes a single entry of a.

2. THE MODEL

We propose a non-negative source-filter dynamical system (NSFDS)
model. NSFDS models the complex spectrum X ∈ CF×N as a
conditionally zero-mean complex Gaussian distribution,

xfn ∼ Nc(xfn; 0, gnvrfnvefn), (1)

whose variance is modeled as the product of a filter component vrfn,
an excitation component vefn, and a gain gn, where f denotes the
frequency index and n the frame index. The filter component aims
to capture the time-varying structure of the phonemes, whereas the
excitation component aims to capture time-varying pitch and other
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Fig. 2. Graphical representation of the proposed model. Circular
nodes denote the continuous random variables, rectangular nodes
denote the discrete random variables, and shaded nodes denote the
observed variables. The arrows determine the conditional indepen-
dence structure.

excitation modes of the speech. The gain component helps the model
to track changes in amplitude.

This modeling approach is equivalent to assuming an expo-
nential distribution over the power spectrum sfn = |xfn|2, with
sfn ∼ E(sfn; 1/(gnvrfnvefn)). Maximum likelihood estimation on
this model is equivalent to minimizing the Itakura-Saito divergence
between sfn and gnvrfnv

e
fn [21].

For a given time frame n, the excitation component ven is as-
sumed to be a column of an excitation dictionary We ∈ RF×Ke

+ :

vefn =
∏
m

wefm
[he

n=m], (2)

where [·] is the indicator function, i.e., [x] = 1 if x is true and 0
otherwise. Here, the discrete random variable hen ∈ {1, . . . ,Ke} is
called ‘excitation label’ and determines the pitch and other excitation
modes.

We model the filter component Vr as the multiplication of a pre-
determined filter dictionary Wr ∈ RF×Kr

+ and an activation matrix
U ∈ RKr×N

+ , where we further restrict the domain of U in such a
way that each column of U is a noisy realization of a column of an
activation dictionary B ∈ RKr×Ir

+ :

vrfn =
∑
k

wrfkukn,

ukn =
(∏

i

b
[hr

n=i]

ki

)
εukn, εukn ∼ G(εukn;α, β). (3)

We call hrn ∈ {1, . . . , Ir} a ‘phoneme label’ and hrn determines the
column of B that is chosen at time frame n. The gamma distribution
G is defined using shape and inverse scale parameters.

In order to introduce continuous dynamics and enforce smooth-
ness, we assume a gamma Markov chain on the gain variables g:

gn =
(
gn−1

)
εgn, εgn ∼ G(εgn;φ, ψ). (4)

For simplicity, we constrain the innovations ε to have mean 1 by tak-
ing α = β, φ = ψ. Finally, we assume Markovian priors on the
phoneme labels hr and the excitation labels he in order to incorpo-
rate contextual information, with transition matrices Ar and Ae:

hrn|hrn−1 ∼
∏
i

∏
j

arij
[hrn=i][hr

n−1=j] ,

hen|hen−1 ∼
∏
i

∏
j

aeij
[hen=i][he

n−1=j] . (5)
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Table 1. Update rules for U and g for clean speech. Each variable

can be updated at each iteration to
√
b2−4ac−b

2a
with different a, b,

and c values for each variable. Here, we define ŝfn = gnv
r
fnv

e
fn.

a b c

ukn
∑
f

wr
fk

vr
fn

+ β∏
i b

[hr
n=i]

ki

1− α −u2
kn

∑
f

sfn

gnv
e
fn
ŝ2
fn
wrfk

gn (n = 1) (F + φ)2 0 −
[∑

f

sfn

vr
fn
ve
fn

+ ψgn+1

]2
gn (1 < n < N) ψ

gn−1
F + 1 −

[∑
f

sfn

vr
fn
ve
fn

+ ψ gn
gn+1

]
gn (n = N) ψ

gn−1
F + 1− φ −

[∑
f

sfn

vr
fn
ve
fn

]

Note that the filter and excitation Markov chains could also
be made interdependent to better model statistical relationships
between the two, but here we leave them marginally independent.
Making them dependent would increase the complexity of the model
and the potential benefits remain to be explored.

Finally, we obtain the ultimate model by combining Eqs. 1-5.
An illustration of the proposed NSFDS model is depicted in Fig. 1.
The graphical models for the NSFDS model and related models are
given in Fig. 2.

3. INFERENCE

In this section, we present convergence-guaranteed update rules for
maximum a-posteriori (MAP) estimation in the proposed model. In
particular, we use the majorization-minimization (MM) algorithm
[22] which monotonically decreases the intractable MAP objective
function by minimizing a tractable upper-bound constructed at each
iteration. This algorithm is a block-coordinate descent algorithm
which performs alternating updates of each latent factor given its
current value and the other factors. For more details, the reader is
referred to [22]. The MM algorithm yields the following updates for
B and We:

bki ←
β
∑
n[h

r
n = i]ukn

α
∑
n[h

r
n = i]

, wefm ←

∑
n[h

r
n = m]

sfn

gnv
r
f
n∑

n[h
e
n = m]

(6)

The updates of U and g involve finding roots of second order
polynomials. The corresponding equations are given in Table 1. Fi-
nally, given all other variables, the optimal hr and he can be com-
puted via Viterbi algorithm at each iteration. The transition matrices
Ar and Ae are estimated from the transition counts in the training
data. A more detailed explanation of the update rules is provided in
a supplementary document hosted on our project webpage [23].

4. SPEECH ENHANCEMENT EXPERIMENTS

4.1. Noisy Speech Model

We consider a mixture of speech with additive noise, which leads
to a linear relationship in the complex spectrum domain, xmix

fn =

xspeech
fn +xnoise

fn . This avoids assuming additivity of the power spectra,
an approximation made by many other methods. This is straightfor-
ward if the speech and the noise are both modeled with conditionally
zero-mean complex Gaussian distributions:

xspeech
fn ∼ Nc(xspeech

fn ; 0, vspeech
fn ), xnoise

fn ∼ Nc(xnoise
fn ; 0, vnoise

fn ). (7)

Here, xspeech
fn is modeled by NSFDS, i.e., vspeech

fn = gnv
r
fnv

e
fn as

defined in Eqs. 2-4. For the noise, we use smooth NMF (SNMF)

[24], which is a simple and flexible model for non-stationary signals:

hnoise
kn = hnoise

k(n−1)ε
h
kn, εhkn ∼ G(εhkn;αnoise, βnoise),

vnoise
fn =

∑
k

wnoise
fk hnoise

kn , (8)

where vnoise
fn is assumed to be the product of a spectral dictionary

Wnoise and its corresponding activations Hnoise. SNMF is an exten-
sion of NMF that imposes a gamma Markov chain on the activations
in order to enforce smoothness. Here, we set αnoise = βnoise to con-
strain the innovations εhkn to have mean 1.

For each test case, we estimate the variables hr , he, U, g,
Wnoise, and Hnoise. Once these variables are estimated, the MAP
estimate, and equivalently the minimum mean squares estimate
(MMSE), of the complex clean speech spectrum x̂speech

fn is given by
Wiener filtering:

x̂speech
fn =

vspeech
fn

vspeech
fn + vnoise

fn

xmix
fn . (9)

We can then reconstruct the time-domain speech estimate by taking
the inverse STFT of X̂speech.

Note that, the observation model in Eq 7 is different than the one
defined in Eq 1. For this particular model, the update rules for U and
g are slightly different than the ones defined in Section 3 and they
can be achieved with a similar MM algorithm. The update rules for
the SNMF model can be found in [24].

4.2. Experimental Setup

In our experiments, we use speech files from the TIMIT database and
down-sample to 8 kHz. Signals are analyzed using the STFT with
a sine window of length 320 samples and 75 % overlap for analysis
and re-synthesis.

The parameters Ar , Ae, B, and We of the NSFDS model are
trained separately for male and female speech, each on 1000 utter-
ances (about 50 minutes) from the TIMIT training set. To enforce a
smooth filter component Vr , we use as elementary filters Kr = 10
overlapping sine-shaped bandpass filters, uniformly distributed on
the Mel-frequency scale (see Wr in Fig. 1). The number of elemen-
tary filtersKr should be small in order to prevent the filter part from
capturing the excitation part. The number of phonemes in the train-
ing set is Ir = 61. We use Ke = 300 excitation profiles. For each
mixture, we assume the gender is known and use the NSFDS model
for that gender.

We evaluate the proposed method on mixtures of speech from
the TIMIT test set with challenging non-stationary noise. The noise
data were recorded in a car while driving in the Greater Boston area,
and mainly include engine, road, blinker, wiper, rain, and city noises.
For each of 40 utterances (20 female and 20 male), a noise signal is
randomly selected and added to the speech at 3 different input signal-
to-noise ratios (SNR), for a total of 120 mixtures.

4.3. Training Procedure

During training, we make use of reference information for the fil-
ter labels hr and excitation labels he, and keep those labels fixed to
their reference values throughout the training process. For the fil-
ter labels hr , we use as reference labels the phoneme annotations
provided with the TIMIT database. For the excitation labels he, we
allocate an excitation state to each unvoiced phoneme, and estimate
the remaining (voiced) states by running a pitch estimator [25] on
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Table 2. Evaluation results of the baseline methods and the proposed method.

Method SNR = −20 dB SNR = −10 dB SNR = 0 dB
SDR SIR SAR SDR SIR SAR SDR SIR SAR

OM-LSA 0.75 6.53 3.81 10.09 16.93 12.15 18.88 26.60 21.06
VTS 4.92 10.22 5.86 11.96 19.84 14.06 19.01 27.55 21.43
i-VTS 4.34 13.00 7.27 11.01 25.17 14.79 18.25 27.11 21.95
SNMF 5.02 14.12 5.76 12.60 22.05 13.60 19.77 28.52 20.85
NDS 7.63 21.18 8.49 15.29 28.10 16.58 22.62 33.96 23.87
NSFDS (nd) 7.37 15.69 8.34 14.53 22.17 16.01 22.04 29.99 23.49
NSFDS (sl) 8.33 19.12 9.43 15.26 24.87 16.69 21.93 31.14 23.48
NSFDS 9.18 21.27 10.10 16.17 27.22 17.45 22.66 31.95 23.99

the speech training data and quantizing the obtained pitch estimates
with the k-means algorithm.

By predefining the filter dictionary Wr to consist of smooth
overlapping filters, we implicitly restrict the filter part Vr to capture
the smooth envelope of the spectrum. However, since there is no
explicit constraint on the excitation part Ve, a good method for ini-
tializing the excitation dictionary We is key to ensure that Ve will
capture only the pitch and other excitation modes. To initialize We,
we first compute the cepstrum C = DCT{logS}, where DCT stands
for the discrete cosine transform and S is the power spectrum of the
training data. Eliminating the lower part of the cepstrum to remove
the phoneme-related information, we define the high-pass liftered
spectrum, Shigh = exp(IDCT{Chigh}), where chigh

fn = cfn if f > fc,
and 0 otherwise, and fc is a cut-off frequency. Finally, we initialize
each column of We as the average of the corresponding columns of
the liftered spectrum: wefm=(

∑
n[h

e
n=m]shigh

fn )/(
∑
n[h

e
n=m]).

The variables U and g are initialized randomly under a uni-
form distribution. Once all the variables are initialized, we train the
NSFDS model by using the update rules described in Section 3.

4.4. Testing Procedure

Initial conditions play an important role in alternating optimization
methods. We here use the following initialization procedure.

We first run a simpler speech enhancement method, the optimally-
modified log spectral amplitude estimator (OM-LSA) [1], on the
noisy mixture. To initialize the pitch labels he, we then run a pitch
estimator on the OM-LSA output and initialize he accordingly. For
the phoneme labels hr , we compute the low-pass liftered spectrum
of the OM-LSA output and compare its columns with the columns
of the low-pass liftered spectrum of the training data Slow, where
the low-pass liftered spectrum is defined similarly to its high-pass
counterpart above, Slow = exp(IDCT{Clow}), where clow

fn = cfn
if f ≤ fc, and 0 otherwise. Since reference phoneme labels for
Slow are known, we can initialize hr to the labels of the most sim-
ilar columns of Slow. The variables U and g are again initialized
randomly under a uniform distribution.

After initializing the NSFDS model, we randomly initialize the
SNMF noise model, run the noise model on the noise estimate of
the OM-LSA algorithm until convergence and use these estimates as
initial values for the noise model. Finally, we run our inference algo-
rithm and obtain a clean speech estimate as described in Section 4.1.

4.5. Results

We measure the performance in terms of the signal to distortion ra-
tio (SDR) signal to interference ratio (SIR), and signal to artifact
ratio (SAR), using the BSSEVAL toolbox v.3 [26]. We compare our
method with state-of-the-art methods: OM-LSA, vector Taylor se-
ries (VTS) [9], indirect VTS (iVTS) [27], SNMF, and NDS. Among

−20 −10 0

24

28

32

36

Initial SNR (dB)

S
D

R
 I
m

p
ro

v
e
m

e
n
t 
(d

B
)

 

 

OM−LSA
SNMF
iVTS
VTS
NDS
NSFDS

Fig. 3. SDR improvements for baseline and proposed models.

these methods, SNMF and NDS are gender dependent, i.e., they as-
sume the gender is known. Similar to NSFDS, we combine SNMF
and NDS speech models with an SNMF noise model as described in
Section 4.1, where the noise models are initialized as in Section 4.4.

We also define two simpler versions of NSFDS to reveal the con-
tributions of different parts of the model: in the first, NSFDS single-
layer (sl), we discard the intermediate layer variables B and U and
model the filter part exactly as the excitation part (see Eq. 2), training
Wr as well; in the second, NSFDS no-dynamics (nd), we discard the
temporal dependencies between hr , he, and g and assume they are
independent and identically distributed a priori.

For all models (including the baseline models), we investigate
various parameter settings and report the best one in terms of SDR.
The results are given in Table 2 and Fig. 3. Note that initial SNR
is computed on parts where speech is present, while the SDR is
computed on the whole mixtures, making initial SDR lower than
initial SNR. The proposed NSFDS model outperforms all baseline
methods in terms of SDR, with the improvement decreasing from
−20 dB to 0 dB initial SNR. The results show that the usage of the
intermediate layer and the dynamics each contribute to the perfor-
mance, and the best performance is obtained with the full model.
Note that the large baseline SDR improvements are due to the pres-
ence of easily-removable low-frequency stationary noise in the data.
Informal subjective tests confirm that our method performs better
than other methods; we invite the readers to check the audio samples
available on our project webpage [23].

5. CONCLUSION

We presented a novel probabilistic model for speech enhancement
following a source-filter approach in which the excitation and filter
parts are modeled as non-negative dynamical systems. We presented
convergence-guaranteed update rules for each latent factor. We eval-
uated our model on a challenging speech enhancement task involv-
ing non-stationary car noises, and showed that the proposed method
outperforms the state-of-the-art in terms of objective measures.
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