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ABSTRACT

Non-negative matrix factorization (NMF) is a popular method for
learning interpretable features from non-negative data, such as
counts or magnitudes. Different cost functions are used with NMF
in different applications. We develop an algorithm, based on the
alternating direction method of multipliers, that tackles NMF prob-
lems whose cost function is a beta-divergence, a broad class of
divergence functions. We derive simple, closed-form updates for the
most commonly used beta-divergences. We demonstrate experimen-
tally that this algorithm has faster convergence and yields superior
results to state-of-the-art algorithms for this problem.

Index Terms— non-negative matrix factorization, beta-divergence,
alternating direction method of multipliers.

1. INTRODUCTION

In many applications, observations come in the form of vectors vn,
and the data are assumed to be generated as linear combinations of
relatively few underlying basis vectors or prototypes. The goal is to
simultaneously learn the basis vectors {wk} and activations {Hkn}
from the data so that vn ≈

∑K
k=1Hknwk. In matrix notation V =[

v1 · · · vN
]
, the problem can be recast in terms of finding a

low-rank factorization of V , i.e., matrices W and H such that:

V ≈WH. (1)

There are many ways of factoring V into W and H , of which
the most classical and well-known is principal components analysis
(PCA). However, in many applications, the observations V are non-
negative and it often makes sense to assume W and H to be non-
negative as well. The problem of finding non-negative matrices W
and H is known as non-negative matrix factorization (NMF) [1].
Examples include:

• hyperspectral imaging: vn is vector of reflectance coeffi-
cients observed in pixel n, wk corresponds to “end-member”
spectra characteristic of the materials present in the observed
scene, and hkn are the mixing proportions or so-called “abun-
dances” [2].

• topic modeling: vn is a vector of word counts in document n,
wk corresponds to a “topic” (a distribution over words) and
hkn the representation of those topics in document n [3].
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• audio signal processing: vn is the magnitude or power spec-
trum at time n, wk corresponds to an underlying spectral fea-
ture and hkn the activation of that feature at time n [4].

The general form of the NMF problem is

minimize D(V |WH)

subject to Wfk ≥ 0, Hkn ≥ 0, (2)

where D(V |V̂ ) represents some measure of divergence between V
and its reconstruction V̂ .

We consider a general family of divergence functions known as
the β-divergence Dβ for β ∈ R [5, 6]. The divergence between
two matrices is defined as the sum of the element-wise divergence,
i.e., Dβ(V |V̂ ) =

∑
f,n dβ(Vfn|V̂fn), where dβ is defined for β ∈

R\{0, 1} by

dβ(x|y) =
xβ

β(β − 1)
+
yβ

β
− xyβ−1

β − 1
. (3)

This definition is extended to β ∈ {0, 1} in the obvious way, by
taking limits. The three divergence functions most commonly used
with NMF are special cases of the β-divergence:

• β = 2 (Euclidean): d(x|y) = 1
2
(x− y)2

• β = 1 (Kullback-Leibler): d(x|y) = x log x
y
− x+ y

• β = 0 (Itakura-Saito): d(x|y) = x
y
− log x

y
− 1.

Euclidean distance is perhaps the “obvious” way of measuring
the divergence between two numbers, but in many applications in-
volving non-negative data, it is not natural, namely because it under-
lies a real-valued Gaussian distribution for the data. In topic model-
ing where the data are counts, it is natural to minimize the Kullback-
Leibler (KL) divergence, since it is equivalent to maximizing a Pois-
son log-likelihood [3]. In audio, the Itakura-Saito (IS) divergence is
a natural choice because it underlies a suitable multiplicative expo-
nential noise model of the spectrogram [7]. It is also scale-invariant,
so it gives small time-frequency coefficients the same importance as
larger ones, much like the human ear.

By considering the entire class of β-divergences, we develop
algorithms not only for the much studied case of Euclidean distance,
but also for other divergences that are used in specific applications.

2. EXISTING ALGORITHMS

Most existing work on algorithms for non-negative matrix factor-
ization has focused on Euclidean NMF. To be explicit, the problem
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under consideration is

minimize
1

2
||V −WH||2F

subject to Wfk ≥ 0, Hkn ≥ 0. (4)

Since the problem is bi-convex, i.e., convex in H for W fixed and
convex in W for H fixed, many algorithms adopt a alternating mini-
mization approach. Paatero and Tapper used alternating least squares
[8], calculating the least squares estimate and thresholding negative
entries to zero. Lee and Seung derived multiplicative updates that
alternately induce a descent in W and H [9]. Convergence to a sta-
tionary point is not guaranteed with either algorithm, and counterex-
amples can be found [10]. Lin proposed using projected gradient
descent, an all-purpose algorithm with convergence guarantees [11].
State-of-the-art algorithms for (4) solve the subproblems for W ≥ 0
and then H ≥ 0 exactly using active-set methods [12]. There are
also algorithms that attempt to update W and H simultaneously,
such as HALS [13]. An up-to-date survey of algorithms for NMF
can be found in [14, 15].

With the exception of projected gradient and multiplicative up-
dates, the aforementioned algorithms rely on special properties of
Euclidean distance and do not generalize readily to other members
of the β-divergence family. Using a majorization-minimization ap-
proach, [6] showed that multiplicative updates could be derived for
the entire family of β-divergences. Projected gradient descent for
NMF with the β-divergence is straightforward. However, multiplica-
tive updates have been more popular, owing to their:

1. stability: they do not require solving possibly ill-conditioned
systems, as with Newton’s method.

2. ease of implementation: each iteration requires just two
lines of Matlab code, in contrast with projected gradient,
which usually requires a more involved line search.

3. linear complexity per iteration: O(FKN)

However, they also suffer from problems, including:

1. slow convergence, especially tail convergence.

2. asymptotic convergence to zeros: since each update in-
volves multiplying the matrix element-wise by a positive
matrix, the iterates can only converge to zero values in the
limit [2]. Stopping after any finite number of iterations will
result in a dense matrix. Yet the sparsity pattern induced
by the non-negativity constraint is often of interest in many
applications [16].

3. poor local optima? Folk wisdom suggests that multiplicative
updates are especially susceptible to become trapped in poor
local optima [17].

The motivating question for our work is: is it possible to devise
an algorithm that addresses each of these three shortcomings, while
maintaining the advantages of multiplicative updates? That is, can
we develop a faster algorithm that yields sparse solutions, but that is
just as simple to implement without nested subroutines and complex
bookkeeping?

3. ALTERNATING DIRECTION METHODS

Variable splitting is a powerful technique in optimization. The idea
is to split the multiple occurrences of a single variable in a problem
such as

minimize
p∑
i=1

fi(x) (5)

into multiple variables, with a constraint tying the variables together:

minimize
p∑
i=1

fi(xi) subject to
p∑
i=1

Aixi = b. (6)

The advantage is that
∑p
i=1 fi(xi) can be optimized coordinate-

wise, although there is a constraint coupling the problems together.
The alternating direction method of multipliers (ADMM) pro-

vides an elegant way of handling the constraint, while maintaining
the separability of the objective. ADMM alternately optimizes the
augmented Lagrangian

Lρ(x1, ..., xp, u) =

p∑
i=1

fi(xi) + uT
(

p∑
i=1

Aixi − b

)

+
ρ

2
||

p∑
i=1

Aixi − b||22 (7)

with respect to each xi individually, followed by dual ascent in u.
Convergence is known for the special case p = 2 for f1 and f2
convex. A history and description of the method can be found in
[18].

Although there are no guarantees when there are more than two
blocks or when the function is non-convex, ADMM has also been
considered for solving NMF problems. One approach is presented
in [18], but it requires solving a quadratic program as a subproblem
at each iteration, and thus is neither easy to implement nor fast. More
similar to our approach is [19]. Both papers consider only the case
of NMF with Euclidean distance. In the next section, we present an
efficient ADMM algorithm that works for the entire β-divergence
family, including Euclidean distance.

4. ALGORITHM

NMF, particularly with non-Euclidean divergences, is amenable to
splitting for several reasons:

1. While Dβ(V |X) is simple to minimize with respect to X ,
Dβ(V |WH) is not simple to minimize with respect to W
or H . Multiplicative updates implicitly tackle this problem,
by majorizing Dβ so that the W and H decouple [6]. In
an ADMM context, a natural split would be to minimize
Dβ(V |X) with the constraint X =WH .

2. The non-negativity constraints on W and H complicate the
optimization over W and H . We can introduce new variables
W+ and H+ to which the non-negativity constraints are ap-
plied, with the constraints W =W+ and H = H+.

In summary, the NMF problem (2) can be rewritten

minimize Dβ(V |X) (8)
subject to X =WH

W =W+, H = H+

W+ ≥ 0, H+ ≥ 0.

The notation above implies an augmented Lagrangian consisting of
eight variables—five primal and three dual—although from the per-
spective of ADMM, this is only a three-block optimization: W , H ,
and (X,W+, H+). This is because the objective splits as a function
of X , W+, and H+, so optimizing them separately is equivalent to
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optimizing them jointly:

Lρ(X,W,H,W+, H+, αX , αW , αH) =

Dβ(V |X) + 〈αX , X −WH〉+ ρ

2
||X −WH||2F

+ 〈αW ,W −W+〉+
ρ

2
||W −W+||2F

+ 〈αH , H −H+〉+
ρ

2
||H −H+||2F . (9)

The updates alternately optimize Lρ with respect to each of the five
primal variables, followed by gradient ascent in each of the three
dual variables. This is summarized below.

Algorithm 1 ADMM for NMF with the β-divergence
inputs V
initialize X,W,H,W+, H+, αX , αW , αH
repeat

WT ← (HHT + I)\(HXT +WT
+ + 1

ρ
(HαTX − αTW ))

H ← (WTW + I)\(WTX +H+ + 1
ρ
(WTαX − αH))

X ← argmin
X≥0

Dβ(V |X) + 〈αX , X〉+ ρ
2
||X −WH||2F

W+ ← max(W + 1
ρ
αW , 0)

H+ ← max(H + 1
ρ
αH , 0)

αX ← αX + ρ(X −WH)
αH ← αH + ρ(H −H+)
αW ← αW + ρ(W −W+)

until convergence return W+, H+

In the updates for W and H in Algorithm 1, we have used the
Matlab notationA\b to denote the solution to the least squares prob-
lem argminx||Ax − b||2. Since the matrices A in these updates are
square and nonsingular, A\b = A−1b. Although least squares prob-
lems can be unstable in general, the addition of the identity matrix I
in these cases stabilize the problem. The complexity of this opera-
tion is low, since A in this case is K ×K, where K � F,N .

The only update not provided in closed form above is the one for
X , which we restate here for convenience:

X ← argmin
X≥0

Dβ(V |X) + 〈αX , X〉+
ρ

2
||X −WH||2F . (10)

Note that this is the only update that depends on β. As we shall
see, (10) can be solved in closed form in the three most important
cases β = 0, 1, 2. In general, (10) can be efficiently solved using
Newton’s method. We detail the closed-form updates for β = 0, 1
below. The updates for β = 2 can be derived similarly, although in
the Euclidean case, the splitting of X and WH is unnecessary. The
algorithm for β = 2 without this splitting can be found in [19].

Theorem 1. For Kullback-Leibler divergence (β = 1), (10) is given
by:

X ←
(ρWH − αX − 1) +

√
(ρWH − αX − 1)2 + 4ρV

2ρ
(11)

where all operations are element-wise.

Proof. Substituting the expression for Dβ , β = 1 into (10) and set-
ting equal to zero, we obtain the condition

− Vfn
Xfn

+ 1 + (αX)fn + ρ(Xfn − (WH)fn) = 0.

Multiplying by Xfn, we obtain a quadratic equation; applying the
quadratic formula, we obtain one positive and one negative root. The
positive root is (11).

Theorem 2. For Itakura-Saito divergence (β = 0), (10) is given by
the following series of updates:

A← αX/ρ−WH (12)

Bfn ← 1/(3ρ)−A2
fn/9 (13)

Cfn ← −A3
fn/27 +Afn/(6ρ) + Vfn/2ρ (14)

Dfn ← B3
fn + C2

fn (15)

Yfn ←


(
Cfn +

√
Dfn

)1/3
+
(
Cfn −

√
Dfn

)1/3
Dfn ≥ 0

2
√
−Bfn cos

(
1
3
cos−1 Cfn√

−B3
fn

)
Dfn < 0

(16)

Xfn ← Yfn −Afn/3 (17)

Proof. We substitute the expression for Dβ , β = 0 into (10). Then,
X∗ > 0 is a minimizer if and only if the gradient vanishes at X∗

and the Hessian is positive definite. Since the objective is separable
in the entries of X , we can state this as

gfn(X
∗
fn) = 0 g′fn(X

∗
fn) > 0 for all f, n (18)

where gfn denotes the derivative with respect to Xfn:

gfn(x) = −
Vfn
x2

+
1

x
+ (αX)fn + ρ(x− (WH)fn).

Define pfn(x) = (x2/ρ)gfn(x) so that pfn is a cubic polynomial.
Then pfn has the same roots as gfn, and p′fn has the same sign as
g′fn at the roots, so it is equivalent to check (18) for pfn.

We can express pfn explicitly as

pfn(x) = x3 +Afnx
2 + (1/ρ)x− Vfn/ρ (19)

where A is defined in (12). We want a positive root x0 > 0 of pfn
such that p′fn < 0. At least one such root exists, since pfn(0) < 0
and pfn(x)→∞ as x→∞.

Next, we shift the cubic using the substitution x = y − Afn/3
to obtain the depressed cubic

qfn(y) = y3 + 3Bfny − 2Cfn (20)

whereB,C are defined in (13), (14). The roots yk of qfn are related
to the roots xk of pfn by xk = yk −Afn/3. The discriminant Dfn
of qfn is then given by (15), and there are three cases, studied next.

Dfn > 0, one real root:

y0 =
(
Cfn +

√
Dfn

)1/3
+
(
Cfn −

√
Dfn

)1/3
. (21)

Therefore, the corresponding root x0 of pfn must be positive and
the minimizer of (10).

Dfn = 0, two distinct real roots:
y0 as defined above and a double root y1 = y2 = −y0/2. How-

ever, double roots correspond to point of inflections of qfn, which
means g′(x1) = 0, so x1 is not a minimizer of (10). Therefore, the
relevant root is again y0.
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Dfn < 0, three distinct real roots:

yk = 2
√
−Bfn cos

1

3
cos−1 Cfn√

−B3
fn

− k 2π
3


for k = 0, 1, 2. If there are three roots, then p′fn (and hence g′fn) can
only be positive at the largest and smallest roots. Since it is always
true that y0 ≥ y1 ≥ y2, it is sufficient to check only x0 and x2 (the
latter only if x2 > 0). For simplicity, in the implementation above,
we have always taken x0, which is guaranteed to be at least a local
minima of (10).

In all three cases, to recover the corresponding root of pfn from
y0, we re-apply the substitution: x0 = y0−Afn/3. We have omitted
many details in this derivation which are standard [20]. We have
instead focused on the simplifications that are possible because the
problem only requires positive roots of pfn at which p′fn > 0.

We note that these updates for optimizing (10) exactly in the
case β = 0 could also be used with the ADMM algorithm in [21].

5. EXPERIMENTS

We first tested our algorithm on a moderately sized example, with
F = 200, N = 1000, and K = 100. We generated ground truth
matrices W0 and H0 and set V = W0H0. Therefore, the true mini-
mum value of the objective (2) is zero. We examine the performance
of Algorithm 1 against the standard multiplicative updates [6]. In
the ADMM algorithm, there is a tuning parameter ρ, which controls
the convergence rate. A smaller value of ρ leads to larger step sizes,
which can result in faster convergence but also instability. We con-
sidered four values of ρ and the two cases of the β-divergence ex-
amined above: β = 1 (Kullback-Leibler) and β = 0 (Itakura-Saito).
The algorithms were implemented in Matlab.

The convergence of the different algorithms is shown in Figure 5
on a logarithmic scale. Runtime, rather than iteration number, is
displayed on the x-axis to account for the higher per-iteration com-
plexity of ADMM as compared with multiplicative updates. The
experiments show that for values of ρ in the right range, ADMM
can produce much faster convergence than multiplicative updates,
achieving levels of accuracy that would take multiplicative updates
several orders of magnitude longer to achieve. However, the conver-
gence of ADMM can be slower than multiplicative updates if ρ is
large, as represented by the red lines. When ρ is small, convergence
can be unstable, as the magenta lines show, although they eventually
reach a fast convergence rate. Note that ADMM does not guarantee
monotone decrease in the objective, a downside that especially arises
when ρ is small.

We also compared the two algorithms on an audio source separa-
tion task. We synthesized 10-second, 0 dB mixtures of speech from
TIMIT and noise from AURORA. First, basis vectors were learned
from held-out training speech and noise using Itakura-Saito NMF
(β = 0) on the power spectrograms. Then, the activations of these
basis vectors in the mixture were learned, again using NMF. This
produces estimates of the speech and noise in the mixture [4].

The same initialization was used for both algorithms, and each
algorithm was allowed to run for 20 seconds. ρ was set to 1 for
ADMM. We then computed the signal-to-distortion (SDR) ratio of
the recovered speech source [22]. The results are shown in Table 5.
They demonstrate that ADMM achieves at least comparable, if not
superior, separation performance to multiplicative updates, lending
some support to the claim that the latter can be susceptible to poor lo-
cal optima. Moreover, ADMM yielded sparse matrices (∼80% of the
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Fig. 1. The objective value (2) for β = 1 (top) and β = 0 (bottom)
as a function of runtime. We compare Algorithm 1 for four settings
of ρ with multiplicative updates on a synthetic example.

car street subway train
fpas0 5.96 / 5.13 6.71 / 6.08 4.09 / 3.76 5.96 / 6.08
fpkt0 5.60 / 5.70 5.92 / 5.78 4.14 / 3.97 6.05 / 8.40
mtdt0 3.83 / 4.17 5.35 / 3.05 3.71 / 2.34 5.48 / 5.43
mwew0 4.82 / 6.28 7.05 / 5.99 4.56 / 2.78 5.30 / 7.96

Table 1. SDR of the estimated speech using ADMM / multiplicative
updates on combinations of 4 TIMIT speech examples (2 female, 2
male) and 4 AURORA noise examples. The higher SDR is bold.

estimated activations H for the mixture signal were zeros), whereas
multiplicative updates produced no exact zeros.

6. CONCLUSION

We have demonstrated that the ADMM framework can be used to de-
rive an algorithm for NMF with β-divergence that outperforms the
state-of-the-art multiplicative updates used to solve these problems.
ADMM has faster convergence and produces exact sparsity, and is
as straightforward to implement, requiring only one additional tun-
ing parameter ρ. However, we have also seen that the performance
can also be sensitive to this parameter. Although there is some litera-
ture on choosing ρ automatically [23], we also envision applications
where the practitioner can afford to monitor the convergence and
tune ρ appropriately. As we have seen, ADMM can achieve a given
level of accuracy orders of magnitude faster than multiplicative up-
dates, so the tuning of ρ may be a small price to pay.
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