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ABSTRACT

This paper presents a crowdsourcing-based self-improvement frame-
work of vocal activity detection (VAD) for music audio signals. A
standard approach to VAD is to train a vocal-and-non-vocal classifier
by using labeled audio signals (training set) and then use that classi-
fier to label unseen signals. Using this technique, we have developed
an online music-listening service called Songle that can help users
better understand music by visualizing automatically estimated vo-
cal regions and pitches of arbitrary songs existing on the Web. The
accuracy of VAD is limited, however, because in general the acous-
tic characteristics of the training set are different from those of real
songs on the Web. To overcome this limitation, we adapt a classifier
by leveraging vocal regions and pitches corrected by volunteer users.
UnlikeWikipedia-type crowdsourcing, our Songle-based framework
can amplify user contributions: error corrections made for a limited
number of songs improve VAD for all songs. This gives better music
listening experiences to all users as non-monetary rewards.

Index Terms— Music signal analysis, vocal activity detection,
melody extraction, probabilistic models, crowdsourcing

1. INTRODUCTION

Vocal activity detection (VAD) for music audio signals is the basis of
a wide range of applications. In retrieval systems, the presence or ab-
sence of vocal activity (singing) is one of the most important factors
determining a user’s preferences. Some people like standard popular
songs with vocals and others prefer instrumental pieces without vo-
cals. Music professionals such as disk jockeys and sound engineers
often use vocal activity information to efficiently navigate to posi-
tions of interest within a target song (e.g., the beginning of singing or
of a bridge section played by musical instruments). Accurate VAD
is also expected to improve automatic lyric-to-audio synchroniza-
tion [1,2] and lyric recognition for music audio signals [3–6].

The major problem of conventional studies on music signal anal-
ysis is that almost all methods have been closed in the research com-
munity. Although some researchers release source codes for “repro-
ducible research,” people who are not researchers cannot enjoy the
benefits of the state-of-the-art methods. In addition, we cannot eval-
uate how well the methods work in the real environment. In Japan,
for example, numerous original songs composed using the singing-
synthesis software called Vocaloid have gained a lot of popularity.
Since the acoustic characteristics of synthesized vocals might differ
from those of natural human vocals, for those real songs the accu-
racy of VAD is thought to be limited if the methods are tuned using
common music datasets [7,8] at a laboratory level.

To solve this problem, we have developed a public-oriented on-
line music-listening service called Songle [9] that can assist users to
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Fig. 1. The melody correction interface of the online music-listening
service Songle: Users can correct wrongly-estimated vocal regions
and F0s on a Web browser as if they use a MIDI sequencer.

better understand music thanks to the power of music signals analy-
sis. In the current implementation, four kinds of musical elements of
arbitrary songs existing on the Web can be estimated: beats, chords,
melodies, and structures. Users can enjoy intuitive visualization and
sonification of those estimated elements in synchronization with mu-
sic playback. To estimate main melodies (vocal regions and F0s) of
music audio signals, Songle uses VAD and predominant fundamen-
tal frequency (F0) estimation methods [10,11] that can work well for
commercial audio recordings of popular music.

A key feature of Songle1 is that users can intuitively correct es-
timation errors on a Web browser. Such voluntary error correction is
motivated by prompt feedback of better music-listening experience
based on correctly visualized and sonificated musical elements. For
example, the melody correction interface is shown in Fig. 1. Note
that true F0s take continuous values [Hz] and often fluctuate over a
semitone because of vibrato, but it is too hard for users to correct es-
timated F0s precisely. Users are assumed to correct vocal regions at
a sixteenth-note level and F0s at a semitone level on an easy-to-use
MIDI-sequencer-like interface based on quantized grids.

In this paper we propose a novel crowdsourcing framework that
can cultivate music signal analysis methods in the real environment
by leveraging error corrections made by users. A basic idea for im-
provingVAD is to use vocal regions and semitone-level F0s specified
by users as additional training data. However, the VAD method [10]
used in Songle needs precise F0s for extracting reliable acoustic fea-
tures of the main melody. To solve this problem, we re-estimate the
F0 at each frame accurately by using a predominant-F0 estimation
method [11] that can consider the semitone-level F0 as prior knowl-

1Songle has officially been open to the public (http:://songle.jp).
A Japanese Vocaloid song composed by talented amateurs:
http://songle.jp/songs/www.youtube.com%2Fwatch%3Fv=PqJNc9KVIZE
A English popular song composed by professional musicians:
http://songle.jp/songs/www.youtube.com%2Fwatch%3Fv=1kz6hNDlEEg
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edge. Unlike other crowdsourcing services, our framework can am-
plify user contributions. That is, error corrections made for several
songs improve VAD for all songs, resulting in positive feedback (bet-
ter music-listening experiences) to all users. Such non-monetary re-
wards would motivate users to voluntarily make more corrections in
this circulation-type crowdsourcing ecosystem.

2. RELATED WORK

This section introduces several studies on vocal activity detection
(VAD) and crowdsourcing for music information processing.

2.1. Vocal Activity Detection and F0 Estimation

Vocal activity detection (VAD) is a typical supervised classification
task that aims to detect vocal regions (frames) in music audio sig-
nals. A basic approach is to train a binary vocal-and-non-vocal clas-
sifier by using frame-level acoustic features extracted from labeled
audio signals. This approach was inspired by voice activity detection
in speech signals for speech recognition [12]. Berenzweig and El-
lis [13], for example, extracted phonetic features from music audio
signals by using a hidden Markov model (HMM) that was trained us-
ing speech signals. Nwe et al. [14] tried to attenuate accompanying
harmonic sounds by using key information before feature extraction.
Lukashevich et al. [15] used Gaussian mixture models (GMMs) as
a classifier and smoothed the frame-level estimates of class labels
by using an autoregressive moving-average (ARMA) filter. Ramona
et al. [16] used a support vector machine (SVM) as a binary classifier
and then used a HMM as a smoother.

Fundamental frequency (F0) of main melodies can be effectively
used for improving VAD. Fujihara et al. [10, 17], for example, sep-
arated main melodies sung by vocalists or played by musical instru-
ments (e.g., solo guitar) from music audio signals by automatically
estimating predominant F0s. Although automatic F0 estimation [11]
was imperfect, VAD for separated main-melody signals was more
accurate than VAD for original music signals. Rao et al. [18] took a
similar approach based on another F0 estimation method [19]. Both
methods used standard GMM-based classifiers.

2.2. Crowdsourcing and Social Annotation

Crowdsourcing is a very powerful tool for gathering a large amount
of ground-truth data (for a review see [20]). Recently, Amazon Me-
chanical Turk (MT) has often been used for music information re-
search. For example, Lee [21] collected subjective judgments about
music similarity from MT and needed only 12 hours to collect judg-
ments that took two weeks to collect from experts. Mandel et al. [22]
showed how social tags for musical pieces crowdsourced from MT
could be used for training an autotagger.

There is another kind of crowdsourcing called social annotation.
A key feature that would motivate users to make annotations is that
annotations made by a user are widely shared among all users (e.g.,
Wikipedia). Users often want to let others know their favorite items
even though they are not monetarily rewarded. In conventional social
annotation services, however, improvements based on user contribu-
tions are limited to items directly edited by users. To overcome this
limitation, an online speech-retrieval service named PodCastle [23]
has been developed. In this service, speech signals are automatically
transcribed for making text retrieval feasible. A key feature of Pod-
Castle is that users’ corrections of transcribed texts are leveraged for
improving speech recognition. This leads to better speech retrieval
for all users. An online music-listening service named Songle [9]
can be regarded as a music version of PodCastle.
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Fig. 2. Comparison of predominant F0 trajectories: Precise F0s can
be estimated by using PreFEst [11], which takes into account as prior
knowledge the semitone-level F0s specified by users.

3. VOCAL ACTIVITY DETECTION

This section describes a proposed framework that can improve the
accuracy of vocal activity detection (VAD) by leveraging the power
of crowdsourcing. Our goal is to find vocal regions frommusic audio
signals (i.e., to classify frames into vocal and non-vocal classes). In
this study we use a competitive VAD method [10] used for singing
melody visualization in an online music-listening service Songle [9].
A key feature of this method is to use predominant F0s for extracting
acoustic features that represent the timbral characteristics of main
melodies. The basic procedure is as follows:

Training phase A classifier based on vocal and non-vocal GMMs
is trained using music audio signals with ground-truth anno-
tations (vocal frames and precise vocal F0s in those frames).
Because non-vocal frames have no F0 annotations, a predom-
inant F0 estimation method called PreFEst [11] is used for
estimating non-vocal F0s in those frames. Spectral-envelope
features of main melodies are extracted from vocal and non-
vocal frames and then used for training the GMMs.

Classification phase Predominant F0s over all frames are estimated
from a target audio signal by using PreFEst. Spectral-envelope
features of main melodies are extracted from all frames and
then classified by using the trained classifier.

A basic approach to improving VAD is to increase the amount of
training data by using online music audio signals annotated by users.
Such data can be obtained from Songle, which enables users to cor-
rect wrongly-estimated vocal regions and F0s. However, since users
are for practical reasons assumed to correct vocal F0s at a semitone
level, we cannot extract reliable acoustic features based on precise
F0s that usually fluctuate over time. To solve this problem, we pro-
pose to re-estimate precise F0s by using PreFEst, which as shown
in Fig. 2 considers semitone-level F0s as prior knowledge. This is a
kind of user-guided F0 estimation.

3.1. Predominant F0 Estimation with Prior Knowledge

To estimate the predominant F0 at each frame, we use a method
called PreFEst [11]. The state-of-the-art methods [24, 25] could be
used for initial F0 estimation without prior knowledge. To represent
the shape of the amplitude spectrum of each frame, PreFEst formu-
lates a probabilistic model consisting of a limited number of param-
eters. F0 estimation is equivalent to to finding model parameters that
maximize the likelihood of the given amplitude spectrum.

3.1.1. Probabilistic Model Formulation

PreFEst tries to learn a probabilistic model that gives the best expla-
nation for the observed amplitude spectrum of each frame. Note that
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Fig. 3. A constrained GMM representing a harmonic structure

amplitude spectra and harmonic structures are dealt with in the log-
frequency domain because the relative positions of harmonic partials
are shift-invariant regardless of the F0. Let M be the number of har-
monic partials. As shown in Fig. 3, a constrained GMM is used for
representing a single harmonic structure as follows:

p(x|μ, τ ) =
M∑

m=1

τmN (
x
∣∣μ+ 1200 log2 m,σ2) , (1)

where x indicates a log-frequency2, mean μ is the F0 of the harmonic
structure, variance σ2 is the degree of energy diffusion around the
F0, and mixing ratio τm indicates a relative strength of the m-th
harmonic partial (1 ≤ m ≤ M ). This means that M Gaussians are
located to have harmonic relationships on the log-frequency scale.

As shown in Fig. 4, the amplitude spectrum that might contain
multiple harmonic structures is modeled by superimposing all pos-
sible harmonic GMMs with different F0s as follows:

p(x|τ , p(μ)) =
∫

p(μ)p(x|μ,τ )dμ, (2)

where p(μ) is a probability distribution of the F0. In this model, τ
and p(μ) are unknown parameters to be learned (σ2 is fixed).

3.1.2. Maximum-a-Posteriori Estimation

If prior knowledge is available, it can be taken into account for ap-
propriately estimating τ and p(μ) from the given amplitude spec-
trum [26]. More specifically, prior distributions are given by

p(τ )∝ exp
(−βτDKL(τ 0|τ )

)
, (3)

p(p(μ))∝ exp
(−βµDKL(p0(μ)|p(μ))

)
, (4)

where DKL is the Kullback-Leibler divergence, τ 0 is prior knowl-
edge about the relative strengths of harmonic partials, and p0(μ) is
prior knowledge about the distribution of the predominant F0. βτ
and βµ control how much emphasis is put on those priors.

Those prior distributions have an effect that makes τ and p(μ)
close to τ 0 and p0(μ). Eq. (3) is always considered by setting τ 0 to
average relative strengths of harmonic partials. Eq. (4), on the other
hand, is taken into account only at vocal frames where semitone-
level F0s are given by users. In [26], p0(μ) is given by

p0(μ) = N (μ|μ0, σ
2
0), (5)

where μ0 is a semitone-level F0 and σ0 is the standard deviation of
a precise F0 μ around μ0 (we set σ0 = 100 [cents]).

We then perform maximum-a-posteriori (MAP) estimation of τ
and p(μ). An objective function to be maximized is given by

∫
A(x)

(
log p(x|τ , p(μ)) + log p(τ ) + log p(p(μ))

)
dx, (6)

2Linear frequency fh in hertz can be converted to log-frequency fc in
cents as follows: fc = 1200 log2(fh/(440× 2−4.75)).
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Fig. 4. A probabilistic model for a given amplitude spectrum

where A(x) is the observed amplitude spectrum of the target frame.
Since direct maximization of Eq. (6) is analytically intractable, the
expectation-maximization (EM) algorithm is used for iteratively op-
timizing τ and p(μ). The predominant F0 is obtained by picking the
highest peak from p(μ). For details see [11] and [26].

3.2. Feature Extraction

To avoid the distortion of acoustic features caused by accompanying
instruments, the main melody (not limited to vocal regions) is sepa-
rated from a target music audio signal. More specifically, we extract
a set of harmonic partials at each frame by using an estimated vocal
or non-vocal F0 and resynthesize the audio signal by using a well-
known sinusoidal synthesis method.

LPC-derived mel-cepstrum coefficients (LPMCCs) are then ex-
tracted from the synthesized main melody as acoustic features useful
for VAD [17]. The timbral characteristics of speech and singing sig-
nals are known to be represented by their spectral envelopes. LPM-
CCs are mel-cepstrum coefficients of a linear predictive coding (LPC)
spectrum. Since cepstrum analysis plays a role of orthogonalization,
LPMCCs are superior to the linear predictive coefficients (LPCs) for
the classification task. The order of LPMCCs was set to 13.

3.3. Classification

A hidden Markov model (HMM) is used for classifying a feature
vector (a set of LPMCCs) of each frame into vocal and non-vocal
classes. This HMM consists of vocal and non-vocal GMMs trained
using annotated data (musical pieces included in a research-purpose
database and online musical pieces annotated by users). To obtain
estimates of class labels smoothed over time, the self-transition prob-
abilities (1.0−10−40) are set to be much larger than the transition
probabilities (10−40) between vocal and non-vocal classes. The bal-
ance between the hit and correct-rejection rates can be controlled.

3.3.1. Viterbi Decoding

The HMM transitions back and forth between a vocal state sV and a
non-vocal state sN . Given the feature vectors of a target audio signal
X̂ = {x1, · · · ,xt, · · · }, our goal is to find the most likely sequence
of vocal and non-vocal states Ŝ = {s1, · · · , st, · · · }, i.e.,

Ŝ = argmax
S

∑
t

(
log p(xt|st) + log p(st+1|st)

)
, (7)

where p(xt|st) represents an output probability (vocal or non-vocal
GMM) of state st, and p(st+1|st) represents the transition probabil-
ity from state st to state st+1. This decoding problem can be solved
efficiently by using the Viterbi algorithm.
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The output log-probabilities are given by

log p(xt|sV ) = logM(xt|θV )− 1

2
η, (8)

log p(xt|sN) = logM(xt|θN ) +
1

2
η, (9)

where M(x|θ) denotes the likelihood of x in a GMM with param-
eter θ and η represents a threshold that controls the trad-off between
the hit and correct-rejection rates. The parameters of the vocal and
non-vocal GMMs, θV and θN , are trained from LPMCC feature vec-
tors extracted from vocal and non-vocal regions of training data, re-
spectively. We set the number of GMM mixtures to 64.

3.3.2. Threshold Adjustment

The balance between the hit and correct-rejection rates is controlled
by changing η in Eqs. (8) and (9). Since the GMM likelihoods are
differently distributed for each song, it is hard to decide the universal
value of η. Therefore the value of η is adapted to a target audio signal
by using a well-known binary discriminant analysis method [27].

4. EVALUATION

This section reports experiments that were conducted for evaluating
the improvement of VAD based on crowdsourcing.

4.1. Experimental Conditions

We used two kind of music data. One is a set of 100 songs contained
in the RWC Music Database: Popular Music [7] (called RWC data),
and the other is a set of 100 “real” musical pieces available on Songle
(called Songle data). The RWC data had ground-truth annotations
made by experts [8] including precise vocal F0s and regions. On the
other hand, the Songle data has partially been annotated by users.
Note that users are assumed to correct fluctuating F0s at a semitone
level and do nothing for correctly-estimated non-vocal regions. In
the current Songle interface, we cannot judge whether non-vocal re-
gions that were not corrected by users were actually confirmed to be
correct or just unchecked. Therefore in the Songle data the number
of non-vocal frames available for training was much smaller than
that of annotated vocal frames. We used user annotations as ground
truth. A remarkable fact is that there are very few malicious users
because Songle is a non-monetary crowdsourcing service.

We tested the VAD method [10] in three different ways. To train
a classifier, we used only the RWC data (case A) or both the RWC
data and the Songle data (cases B and C). In case B, semitone-level
F0s given by users were directly used for feature extraction. In case
C, on the other hand, precise F0s were re-estimated by using PreFEst
that considered semitone-level F0s as prior knowledge.

We measured the accuracy of classification (a rate of correctly-
classified frames) on the Songle data. In cases B and C, we con-
ducted 10-fold cross validation, i.e., the RWC data and 90% of the
Songle data were used for training and the rest Songle data were used
for evaluation. We then performed VAD for 50 songs whose vocals
were synthesized by the Vocaloid software. Those songs were cho-
sen from the top ranks in the play-count ranking (not an strictly open
evaluation) and were completely annotated by experts.

4.2. Experimental Results

The accuracies of VAD on the Songle data were 66.6%, 67.6%, and
69.6% in cases A, B, and C, respectively. This showed that the pro-
posed crowdsourcing framework (case C) was useful for analyzing

Table 1. A confusion matrix obtained in case A (baseline)
�����������Annotation

Prediction
V NV

Vocal (V) 12,347 s 4,086 s
Non-vocal (NV) 2,252 s 268 s

Table 2. Confusion matrices obtained in case B and case C
Without precise F0 estimation

V NV
V 12,452 s 3,981 s

NV 2,152 s 368 s

With precise F0 estimation
V NV

V 12,505 s 3,928 s
NV 1,827 s 693 s

real musical pieces outside the laboratory environment. The differ-
ence between cases B and C indicated that it was effective to estimate
precise F0s before feature extraction by using PreFEst considering
semitone-level F0s as prior knowledge. As shown in Table 1 and
Table 2, the obtained confusion matrices showed that the number of
true negatives (correctly classified non-vocal frames) was increased
while the number of true positives (correctly classified vocal frames)
was not significantly increased. Note that the vocal GMMs in cases
B and C were trained by using plenty of vocal frames in the Songle
data. Interestingly, this was useful for preventing non-vocal frames
from being misclassified as the vocal class.

There are several reasons that the VAD accuracies on the Songle
data were below 70% in this experiment. Firstly, non-vocal frames
available for evaluation were much fewer than vocal frames available
for evaluation. Secondly, the available non-vocal frames were essen-
tially difficult to be classified because Songle originally misclassified
those frames as the vocal class. Thanks to error corrections made by
users, such confusing frames could be used for evaluation. Note that
the accuracy was 79.6% when we conducted 10-fold class validation
on the RWC data. The accuracy on the Vocaloid data, however, was
74.4% when we used only the RWC data for training.

We confirmed that the accuracy on the Vocaloid data was im-
proved to 75.7% by using the Songle data including many Vocaloid
songs as additional training data. There is much room for improving
VAD. As suggested in [14, 28], it is effective to use a wide range of
acoustic features not limited to LPMCCs. It is also important to in-
crementally cultivate the VAD method by collecting more annotated
data from the user-beneficial crowdsourcing framework.

5. CONCLUSION

This paper presented a crowdsourcing-based self-improvement frame-
work of vocal activity detection (VAD) for music audio signals. Our
framework trains a better classifier by collecting user-made correc-
tions of vocal F0s and regions from Songle. Since vocal F0s are cor-
rected at a semitone level, we proposed to estimate precise F0s by us-
ing as prior knowledge those semitone-level F0s. This enables us to
extract reliable acoustic features. The experimental results showed
that the accuracy of VAD can be improved by regarding user correc-
tions as additional ground-truth data.

This pioneering work opens up a new research direction. Various
kinds of music signal analysis, such as chord recognition and auto-
tagging, could be improved by using the power of crowdsourcing.
We believe that it is important to design a non-monetary ecosystem,
i.e., reward users with the benefits of improved music signal analy-
sis. This could a good incentive to provide high-quality annotations.
Songle is a well-designed research platform in which technical im-
provements are inextricably linked to user contributions.
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